Objective To observe and preliminarily explore the effects of Deferasirox (DFX) on lipid peroxidation and ferroptosis in human retinal endothelial cells (HREC). MethodsA cell experimental study. Divided the in vitro cultured HREC into normal glucose (NG) group, high glucose (HG) group, NG+DFX group, HG+DFX group, NG+DFX+ferric ammonium citrate (FAC) group, and HG+DFX+FAC group. Light microscope was used to observe the morphology of the cells; cell proliferation was detected by Cell Counting Kit-8 assay, and Calcein-AM staining was used to detect the unstable iron pool (LIP) content; enzyme-linked immunosorbent assay reader was used to detect the reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG); Western blot was used to detect the relative protein expression of Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11). Two-tailed Student t test was used for comparison between the two groups; one-way ANOVA was used for comparison between multiple groups. ResultsCompared with the HG group and the HG+DFX+FAC group, the cell proliferation rate and the contents of GSH and the relative protein expression of GPX4, and SLC7A11 in the HG+DFX group were significantly increased, and the differences were statistically significant (F=150.70, 21.02, 26.09, 52.62; P<0.001). The contents of LIP, ROS, MDA, and GSSG were significantly decreased, and the differences were statistically significant (F=807.20, 16.94, 31.62, 19.21; P<0.001). ConclusionsHigh glucose significantly induces an increase in LIP, lipid peroxidation, and ferroptosis in HREC. Deferasirox inhibits lipid peroxidation and ferroptosis in HREC by downregulating LIP levels.
ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.
Objective To investigate the effect of microRNA-22-3p (miR-22-3p) on the inflammation of human pulmonary microvascular endothelial cells (HPMEC) induced by lipopolysaccharide (LPS) by regulating the HMGB1/NLRP3 pathway. Methods miRNA microarray was taken from peripheral blood of patients with acute respiratory distress syndrome (ARDS) caused by abdominal infection and healthy controls for analysis, and the target miRNA was selected. miRNA mimics, inhibitor and their negative controls were transfected in HPMECs which were stimulated with LPS. Real time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the mRNA and protein levels of high mobility group box-1 protein (HMGB1) and nucleotide binding oligomerization segment like receptor family 3 (NLRP3). RT-qPCR and enzyme linked immunosorbent assay were used to detect the levels of inflammatory factors in the cells and supernatant. Results miRNA microarray showed that miR-22-3p was down-regulated in the plasma of patients with ARDS. Compared with the negative control group, after miR-22-3p over-expression, the protein and mRNA levels of HMGB1 and NLRP3 decreased significantly. Similarly, the level of cleaved-caspase-1 decreased significantly. At the same time, interleukin (IL)-6, IL-8 and IL-1β mRNA level in cytoplasm and supernatant were down-regulated by miR-22-3p mimics. After transfected with miR-22-3p inhibitor, the expression levels of HMGB1, NLRP3, caspase-1 protein and inflammatory factors were significantly up-regulated. Conclusion miR-22-3p is significantly downregulated in peripheral blood of ARDS patients caused by abdominal infection, which can inhibit the expression of HMGB1 and NLRP3 and its downstream inflammatory response in HPMECs.
Objective To observe the effects of overexpression of polypyrimidine tract binding protein-associated splicing factor (PSF) on the endoplasmic reticulum (ER) oxidative stress damage of human retinal microvascular endothelial cells (hRMEC) under high concentration of 4-hydroxynonenal (4-HNE). MethodsThe logarithmic growth phase hRMEC cultured in vitro was divided into normal group, simple 4-HNE treatment group (simple 4-HNE group), empty plasmid combined with 4-HNE treatment group (Vec+4-HNE group), and PSF high expression combined with 4-HNE treatment group (PSF+4-HNE group). In 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group cell culture medium, 10 μmol/L 4-HNE was added and stimulated for 12 hours. Subsequently, the Vec+4-HNE group and PSF+4-HNE group were transfected with transfection reagent liposome 2000 into pcDNA empty bodies and pcDNA-PSF eukaryotic expression plasmids, respectively, for 24 hours. Flow cytometry was used to detect the effects of 4-HNE and PSF on cell apoptosis. The effect of PSF overexpression on the expression of reactive oxygen species (ROS) in hRMEC was detected by 2', 7'-dichlorodihydrofluorescein double Acetate probe. Western blot was used to detect ER oxide protein 1 (Ero-1), protein disulfide isomerase (PDI), C/EBP homologous transcription factor (CHOP), glucose regulatory protein (GRP) 78, protein kinase R-like ER kinase (PERK)/phosphorylated PERK (p-PERK), and Eukaryotic initiation factor (eIF) 2α/the relative expression levels of phosphorylated eIF (peIF) and activated transcription factor 4 (ATF4) proteins in hRMEC of normal group, 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group. Single factor analysis of variance was performed for inter group comparison. ResultsThe apoptosis rates of the simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were (22.50±0.58)%, (26.93±0.55)%, and (11.70±0.17)%, respectively. The intracellular ROS expression levels were 0.23±0.03, 1.60±0.06, and 0.50±0.06, respectively. The difference in cell apoptosis rate among the three groups was statistically significant (F=24.531, P<0.05). The expression level of ROS in the Vec+4-HNE group was significantly higher than that in the simple 4-HNE group and the PSF+4-HNE group, with a statistically significant difference (F=37.274, P<0.05). The relative expression levels of ER Ero-1 and PDI proteins in the normal group, simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were 1.25±0.03, 0.45±0.03, 0.63±0.03, 1.13±0.09, and 1.00±0.10, 0.27±0.10, 0.31±0.05, and 0.80±0.06, respectively. The relative expression levels of CHOP and GRP78 proteins were 0.55±0.06, 1.13±0.09, 0.90±0.06, 0.48±0.04 and 0.48±0.04, 1.25±0.03, 1.03±0.09, 0.50±0.06, respectively. The relative expression levels of Ero-1 (F=43.164), PDI (F=36.643), CHOP (F=42.855), and GRP78 (F=45.275) proteins in four groups were compared, and the differences were statistically significant (P<0.05). Four groups of cells ER p-pERK/pERK (F=35.755), peIF2 α/ The relative expression levels of eIF (F=38.643) and ATF4 (F=31.275) proteins were compared, and the differences were statistically significant (P<0.05). ConclusionPSF can inhibit cell apoptosis and ROS production induced by high concentration of 4-HNE, and its mechanism is closely related to restoring the homeostasis of ER and down-regulating the activation level of PERK/eIF2α/ATF4 pathway.
ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.
ObjectiveTo explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. MethodsBMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. ResultsThe cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.
OBJECTIVE: To determine an optimal co-culture ratio of the rabbit periosteal osteoblasts (RPOB) and rabbit renal vascular endothelial cells(RRVEC) without direct contact for future study of bone tissue engineering. METHODS: RPOB and RRVEC in the ratios of 1:0(control group), 2:1(group 1), 1:1(group 2) and 1:2(group 3) were co-cultured by six well plates and cell inserts. Four days later, the proliferation of RPOB and RRVEC were examined through cell count. Differentiated cell function was assessed by alkaline phosphatase (ALP) activity assay and 3H proline incorporation assay. RESULTS: When RPOB and RRVEC were indirectly co-cultured, the proliferation of RPOB and 3H proline incorporation was higher in group 1 than in the other experimental groups and control group (P lt; 0.05). ALP activity of RPOB was higher in group 1 than in control group and group 3 (P lt; 0.05), but there was no significant difference between group 1 and group 2 (P gt; 0.05). CONCLUSION: These results suggest that RPOB and RRVEC co-cultured in a ratio of 2:1 is optimal for future study of bone tissue engineering.
Objective To investigate the role and relative mechanism of stromal cell derived factorl (SDF-1) secreted by nucleus pulposus cells (NPCs) on the proliferation of vascular endothelial cells (VECs). Methods The NPCs were isolated from the degenerated disc specimens after discectomy. NPCs at passage 1 were transfected with lentivirus-mediated SDF-1 over-expression; transfected and untransfected NPCs at passage 2 were cultured in the three-dimensional alvetex? scaffold, then they were co-cultured with HMEC-1 cells. The morphology of NPCs was observed by scanning electron microscope (SEM), and the apoptosis of HMEC-1 cells was detected by Annexin V/propidiumiodide staining after 72 hours co-culutre. The proliferation of HMEC-1 cells was detected by cell counting kit 8 at 12, 24, 48, and 72 hours in transfected group and untransfected group, respectively. ELISA was used to measure the vascular endothelial growth factor (VEGF) expression level. The virus transfection efficiency and relative Akt pathway were determined by Western blot. Results The NPCs maintained cell phenotype and secreted much extracellular matrix in three-dimensional-culture by SEM observation. In the co-culutre system, after NPCs were transfected with SDF-1 over-expression lentivirus, the proliferation of HMEC-1 cells was significantly increased, while the apoptosis was decreased obviously. The ELISA results demonstrated that the amount of VEGF was remarkably increased in the culture medium. Furthermore, SDF-1 promoted the up-regulation of phosphorylate Akt expression; after inhibition of Akt expression by GSK690693, the proliferation rate of VECs decreased significantly. Conclusion Over-expression of SDF-1 by NPCs is beneficial for VECs proliferation, which is involved in SDF-1-Akt signalling pathway.
Objective To observe the effect of metformin (Met) on inflammatory bodies and focal death in human retinal microvascular endothelial cells (hRMEC) in diabetes mellitus (DM) microenvironment. MethodsExperimental research was divided into in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 9 healthy C57BL/6J male mice were randomly divided into DM group, normal control group, and DM+Met group, with 3 mice in each group. DM group and DM+Met group mice were induced by streptozotocin to establish DM model, and DM+Met group was given Met 400 mg/ (kg · d) intervention. Eight weeks after modeling, the expression of NLRP3, cleaved-membrane perforating protein D (GSDMD) and cleaved-Caspase-1 in the retina of mice in the normal control group, DM group and DM+Met group were observed by immunohistochemical staining. In vitro cell experiments: hRMEC was divided into conventional culture cell group (N group), advanced glycation end products (AGE) group, and AGE+Met group. Joining the AGE, AGE+Met groups cells were induced by 150 μg/ml of glycation end products, and 2.0 mmol/L Met was added to the AGE+Met group. Pyroptosis was detected by flow cytometry; 2',7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe was used to detect the expression of reactive oxygen species (ROS) in cells of each group. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to detect the relative mRNA and protein expression levels of NLRP3, cleaved-GSDMD, cleaved-Caspase-1 in each group of cells. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with the DM group, the expression of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in the retina of normal control group and DM+Met group mice was significantly reduced, with significant difference among the 3 groups (F=43.478, 36.643, 24.464; P<0.01). In vitro cell experiment and flow cytometry showed that the pyroptosis rate of AGE group was significantly higher than that of N group and AGE+Met group (F=32.598, P<0.01). The DCFH-DA detection results showed that the intracellular ROS levels in the N group and AGE+Met group were significantly lower than those in the AGE group, with the significant difference (F=47.267, P<0.01). The mRNA (F=51.563, 32.192, 44.473; P<0.01) and protein levels (F=63.372, 54.463, 48.412; P<0.01) of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in hRMEC of the AGE+Met group were significantly reduced compared to the N group. ConclusionMet can down regulate the expression of NLRP3 inflammatory body related factors in hRMEC and inhibit pyroptosis.
ObjectiveTo observe the effects of NDRG1 on proliferation, migration and lumen formation of retinal vascular endothelial cells (RF/6A cells) in monkeys under high glucose condition. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, small interfering RNA (siRNA) negative control group without target gene (siRNA group), 30 nmol/L siRNA down-regulated NDRG1 genome (siNDRG1 group) and 50 nmol/L siNDRG1 group. Normal group cells were cultured conventionally. The mannitol group was added with 25 mmol/L mannitol, and the high-glucose group was added with 25 mmol/L glucose. In the siRNA group, 25 mmol/L glucose was added, and then blank siRNA was added for induction. The 30 and 50 nmol/L siNDRG1 groups were added with 25 mmol/L glucose and induced with 30 and 50 nmol/L siRNDRG1, respectively. All cells were incubated for 24 h for follow-up experiments. Cell proliferation was observed by 4', 6-diaminidine 2-phenylindole staining. Cell counting kit-8 staining was used to detect cell activity. The expression level of NDRG1 mRNA and protein was detected by Western blot and real-time quantitative polymerase chain reaction. Cell migration was observed by cell scratch assay. Cell lumen formation assay was used to detect lumen formation. The two-tailed Student t test was used to compare the two groups. One-way analysis of variance was used to compare groups. ResultsThere were significant differences in cell proliferation rate (t=36.659, 57.645) mobility rate (t=24.745, 33.638) and lumen formation number (t=41.276, 22.867) between high glucose group and normal group and mannitol group (P<0.01). Compared with normal group and mannitol group, the relative expression levels of NDRG1gene mRNA and protein in high glucose group were significantly decreased, with statistical significance (t=46.145, 21.541, 36.738, 32.976; P<0.001). Compared with the siRNA negative group, the relative expression levels of NDRG1gene mRNA and protein in 30 nmol/L siNDRG1 group and 50 nmol/L siNDRG1 group were significantly decreased, and the differences were statistically significant (t=44.275, 40.7577, 57.167, 25.877; P<0.01). Compared with normal group and siRNA group, cell mobility in 30 nmol/LsiNDRG1 group was increased, and the difference was statistically significant (t=57.562, 49.522; P<0.01). Compared with normal group and siRNA group, the number of cell lumen formation in 30 nmol/LsiNDRG1 group was significantly increased in the same field of vision, and the difference was statistically significant (t=63.446, 42.742; P<0.01). ConclusionDown-regulation of NDRG1 gene can improve the activity, migration and lumen formation of RF/6A cells under hyperglycemia.