Objective To systematically review the clinical efficiency and safety after topical administration of tranexamic acid in total hip arthroplasty. Methods Relevant randomized controlled trials were identified from databases such as Cochrane Library, PubMed, Embase and CNKI from the establishment of the database to August, 2017. A systematic review was performed to compare total blood loss, the rate of transfusion and thromboembolism events between the tranexamic acid group and the control group. And the patients in tranexamic acid group were treated with tranexamic acid for hemorrhage after total hip arthroplasty, while the patients in the control group were not treated with tranexamic acid or used isotonic saline. Analysis was carried out using Review Manager version 5.2.0 software. Results Eight studies were incorporated into the Meta-analysis. The results of Meta-analysis showed that there was significant difference in total blood loss between two groups [weighted mean difference (WMD)=–360.27 mL, 95% confidence interval (CI) (–412.68, –307.87) mL, P<0.000 01]. There was significant difference in the rate of transfusion between two groups [ (odds ratio,OR)=0.22, 95%CI (0.14, 0.33), P<0.000 01]. There was no significant difference in complications between two groups [OR=1.48, 95%CI (0.41, 5.34), P=0.55]. Conclusion Topical administration of tranexamic acid could significantly reduce total blood loss and transfusion requirements in primary total hip arthroplasty, and would not increase thromboembolic complications.
Objective To evaluate the clinical effectiveness and safety of tranexamic acid (TXA) in arthroscopic rotator cuff repair by meta-analysis. Methods Randomized controlled trials evaluating the clinical effectiveness and safety of TXA use in the perioperative period of arthroscopic rotator cuff repair were identified from the Cochrane Library, PubMed, Embase, VIP Chinese Science and Technology Periodical Database, Chinese National Knowledge Infrastructure, and Wanfang database, with a search time span from the inception of the database to August 2024. Meta-analysis was conducted using RevMan 5.3 software, and mean difference (MD) and risk difference (RD) were used as measures of effect size. Results A total of 7 randomized controlled trials were included. Meta-analysis demonstrated significant differences in good visual clarity [MD=9.10, 95% confidence interval (CI) (4.05, 14.15), P=0.0004] and operative time [MD=?12.07 min, 95%CI (?17.21, ?6.93) min, P<0.00001]. There was no significant difference in mean arterial pressure [MD=?1.08 mm Hg (1 mm Hg=0.133 kPa), 95%CI (?3.13, 0.98) mm Hg, P=0.30] or adverse event rate [RD=0.02, 95%CI (?0.01, 0.06), P=0.22] between the two groups. Conclusion TXA is effective and safe in enhancing visual clarity and significantly reducing operative time in arthroscopic rotator cuff repair, without increasing the incidence of adverse events.
Objective To evaluate the effectiveness and safety of intraoperative tranexamic acid use in total shoulder arthroplasty. Methods By searching Cochrane Library, PubMed, Embase, Chongqing VIP, Chinese National Knowledge Infrastructure, Wanfang Database from the establishment of the database to September 2021, randomized controlled trials of intraoperative tranexamic acid use in total shoulder arthroplasty were collected. Outcome indicators were total blood loss, postoperative drainage, hemoglobin reduction, length of operation, length of hospital stay, and formation of hematoma. RevMan 5.3 software was used for meta-analysis. Results Meta analysis results showed that the use of tranexamic acid can reduce total blood loss [weighted mean difference = ?246.55 mL, 95% confidence interval (?335.36, ?157.75) mL, P<0.000 01], reduce postoperative drainage [weighted mean difference = ?134.05 mL, 95% confidence interval (?161.72, ?106.38) mL, P<0.000 01], reduce hemoglobin reduction [weighted mean difference = ?0.64 g/dL, 95% confidence interval (?0.91, ?0.36) g/dL, P< 0.000 01], reduce hematoma formation [risk ratio=0.41, 95% confidence interval (0.22, 0.77), P=0.005]. There was no statistically significant difference in the length of operation and length of hospitalization between patients who used tranexamic acid and those who did not use tranexamic acid (P>0.05). Conclusions Tranexamic acid is effective and safe for patients undergoing total shoulder arthroplasty. It can reduce perioperative bleeding and hematoma formation without increasing the length of surgery and hospitalization.
ObjectiveTo investigate the safety and efficiency of intravenous tranexamic acid (TXA) to reduce blood loss in total knee arthroplasty (TKA). MethodsA prospective, randomized, self-controlled study was carried out on 60 patients scheduled for bilateral TKA between January 2012 and December 2013. TXA (10 mg/kg) was injected intravenously approximately 10 minutes before tourniquet release when TKA was performed on one side (TXA group), and TXA was not used on the other side (control group). No significant difference was found in the preoperative hemoglobin (Hgb), platelet (PLT) count, prothrombin time (PT), and activated partial thromboplastin time (APTT) between 2 groups (P>0.05). The amount of drainage, the total blood loss, the hidden blood loss, the postoperative Hgb, the amount of blood transfusion, the ratio of blood transfusion, and the incidence of vein thrombosis embolism (VTE) were compared between 2 groups. ResultsThe amount of drainage and total blood loss were significantly less in the TXA group than in control group (P<0.05), and the Hgb was significantly lower in the control group than in the TXA group at 6 hours, 1, 3, and 7 days after operation (P<0.05). There was no significant difference in the hidden blood loss between 2 groups (t=1.157, P=0.252). The ratio of blood transfusion was significantly less in TXA group (6.7%, 4/60) than in control group (21.7%, 13/60)(P=0.034). The total amount of blood transfusion was 14 units in TXA group, which was significantly less than that of control group (38 units) (P=0.004). Deep vein thrombosis occurred in 3 cases in 2 groups respectively, showing no significant difference (P=1.000). There was no symptomatic pulmonary embolism. All patients were followed up for 8-17 months, with an average of 13.7 months. No new VTE case was found during the follow-up period. ConclusionIntravenous injection of TXA (10 mg/kg) at 10 minutes before tourniquet release in TKA is effective in reducing perioperative blood loss, amount of blood transfusion, and ratio of transfusion, and it will not increase the risk of VTE.
Objective A prospective randomized controlled trial was conducted to study the effectiveness and safety of intravenous different doses tranexamic acid (TXA) in single-level unilateral minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). Methods The patients treated with single-level unilateral MIS-TLIF between September 2019 and October 2020 were enrolled and randomly classified into low-dose TXA (LD) group (n=39), high-dose TXA (HD) group (n=39), and placebo-controlled (PC) group (n=38). The LD, HD, and PC groups received intravenous TXA 20 mg/kg, TXA 50 mg/kg, the same volume of normal saline at 30 minute before skin incision after general anesthesia, respectively. There was no significant difference on baseline characteristics and preoperative laboratory results among 3 groups (P>0.05), including age, gender, body mass index, surgical segments, hematocrit (HCT), hemoglobin (HGB), prothrombin time (PT), international normalized ratio (INR), D-dimer, fibrin degradation products (FDP), activated partial prothromboplastin time (APTT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cr), urea. The intraoperative blood loss (IBL), postoperative drainage volume, operation time, total blood loss (TBL), hidden blood loss (HBL), blood transfusion, hematological examination indexes on the first day after operation, and the incidence of complications within 1 month were compared among the 3 groups. Results There were 3, 2, and 4 patients in the LD, HD, and PC groups who underwent autologous blood transfusion, respectively, and there was no allogeneic blood transfusion patients in the 3 groups. There was no significant difference in IBL, postoperative drainage volume, and operation time between groups (P>0.05). The TBL, HBL, and the decreased value of HGB in LD and HD groups were significantly lower than those in PC group (P<0.05), and TBL and HBL in HD group were significantly lower than those in LD group (P<0.05); the decreased value of HGB between LD group and HD group showed no significant difference (P>0.05). On the first day after operation, D-dimer in LD and HD groups were significantly lower than that in PC group (P<0.05); there was no significant difference between LD and HD groups (P>0.05). There was no significant difference in other hematological indexes between groups (P>0.05). All patients were followed up 1 month, and there was no TXA-related complication such as deep venous thrombosis of lower extremity, pulmonary embolism, and epilepsy in the 3 groups. ConclusionIntravenous administration of TXA in single-level unilateral MIS-TLIF is effective and safe in reducing postoperative TBL and HBL within 1 day in a dose-dependent manner. Also, TXA can reduce postoperative fibrinolysis markers and do not increase the risk of thrombotic events, including deep venous thrombosis and pulmonary embolism.
Objective To compare the efficacy and safety of intra-articular combined with intravenous administration of tranexamic acid (TXA) with different dosage for reducing blood loss in primary total knee arthroplasty (TKA). Methods Between January 2017 and June 2017, 90 patients suffering from unilateral osteoarthritis who underwent primary TKA were randomly scheduled to three interventions, named groups A, B, and C. Single dosage of TXA via intravenous injection (IV) and different dosages of TXA via intra-articular injection (IA) were utilized in three groups, respectively. All patients in three groups received 1 g TXA IV at 10 minutes preoperatively, and received 1, 2, and 3 g TXA IA diluted in 50 mL saline after wound closure in groups A, B and C, respectively. The age, gender, body mass index, affected side of the knee, grade of osteoarthritis, grade of America Society of Anesthesiologist, preoperative hemoglobin (Hb) concentration, platelet count, preoperative prothrombin time, and activated partial thromboplastin time were not significantly different between groups (P>0.05). The postoperative wound blood drainage, Hb concentration at 1, 3, and 7 days after operation, transfusion rate, and thromboembolic complications were observed. All patients were routinely observed for deep vein thrombosis (DVT) by the color Doppler ultrasonography at 1 week, 1 month, and 3 months after operation, and the symptomatic pulmonary embolism (PE) were observed. Results All patients in three groups were followed up 7-12 months (mean, 8.4 months). There was no significant difference in operation time between groups (P>0.05). The postoperative wound blood drainage was significantly less in groups B and C than that in group A (P<0.05), whereas no significant difference was found between group B and group C (P>0.05). Incision skin necrosis occurred in 1 case of group B and fat liquefaction occurred in 1 case of group C. The other incisions of 3 groups healed by first intention. There was no significant difference in incision complication incidence between groups. The Hb concentration was significantly higher in groups B and C than that in group A at 1, 3, and 7 days after operation (P<0.05). While between group B and group C, the significant difference of Hb concentration only existed at 1 day after operation (P<0.05). The number of patients who got blood transfusion was significantly less in group B (4 cases, 13.3%) and group C (5 cases, 16.7%) than that in group A (9 cases, 30%) (P< 0.05), but no significant difference was found between group B and group C (P>0.05). The result of color Doppler ultrasonography showed that 1 case got DVT in the contralateral calf at 3 weeks in group B. And there was no symptomatic PE in 3 groups. Conclusion Combined administration of IV and IA TXA in a clinically relevant reduction in blood loss was effective and safe in primary TKA, and no thromboembolic complication was observed. The combination of 1 g IV with 2 g IA could be the optional choice.
ObjectiveTo explore the effectiveness and safety of tranexamic acid (TXA) in anterior approach surgery for thoracolumbar fractures.MethodsFrom January 2017 to January 2020, a total of 68 thoracolumbar fracture patients undergoing anterior approach surgery were included and randomly divided into TXA group (n=33) and control group (n=35). Patients in the TXA group were given a dose of 15 mg/kg of TXA by intravenous infusion during 30 min before skin incision and an additional 15 mg/kg of TXA intravenously at 8 h after the first infusion, while the ones in the control group were given 15 mg/kg of normal saline at the same time. Basic data of the patients were collected. The hemoglobin concentration, hematocrit, coagulation and fibrinolysis indexes of the patients were monitored preoperatively, 24-hour postoperatively, and 72-hour postoperatively. The intraoperative blood loss and wound drainage of the patients were recorded. The incidence of blood transfusion and thrombotic events were collected. Statistical analysis was performed.ResultsThere was no significant difference in age, sex, body mass index, operation time, fracture location distribution, anesthesia classification of American Society of Anesthesiologists, neurologic grade of American Spinal Injury Association, injury time, or length of hospital stay between the two groups (P>0.05). Compared with those in the control group, the total blood loss [(1 398.49±312.24) vs. (1 642.30±357.78) mL, P=0.003], intraoperative blood loss [(432.83±74.76) vs. (486.31±86.51) mL, P=0.008], and wound drainage [(276.73±89.42) vs. (389.24±125.71) mL, P<0.001] in the TXA group reduced. No statistically significant difference was found between the two groups in the preoperative hemoglobin or hematocrit (P>0.05), but the 24-hour postoperative hemoglobin concentration [(112.67±20.59) vs. (102.64±19.41) g/L, P=0.042] and hematocrit [(32.25±4.12)% vs. (30.13±4.28)%, P=0.042] in the TXA group were higher than those in the control group. The incidence of allogeneic blood transfusion in the TXA group was lower than that in the control group (6.1% vs. 25.7%, P<0.05). There was no statistically significant difference in preoperative, 24-hour postoperative, or 72-hour postoperative prothrombin time, international standardized ratio, activated partial prothrombin time, platelet count, fibrinogen, d-dimer, or fibrinogen degradation products between the two groups (P>0.05), and no thrombotic complications were found.ConclusionTXA has good efficacy and safety in the anterior approach surgery for thoracolumbar fractures.
ObjectiveTo investigate the efficacy and safety of multiple-dose intravenous tranexamic acid (TXA) for reducing blood loss in complex tibial plateau fractures with open reduction internal fixation by a prospective randomized controlled trial. MethodsA study was conducted on patients with Schatzker type Ⅳ-Ⅵ tibial plateau fractures admitted between August 2020 and December 2022. Among them, 88 patients met the selection criteria and were included in the study. They were randomly allocated into 3 groups, the control group (28 cases), single-dose TXA group (31 cases), and multiple-dose TXA group (29 cases), using a random number table method. There was no significant difference (P>0.05) in terms of age, gender, body mass index, the Schatzker type and side of fracture, laboratory examinations [hemoglobin (Hb), activated partial thromboplastin time (APTT), prothrombin time (PT), fibrinogen (Fib), international normalized ratio (INR), D-dimer, and interleukin 6 (IL-6)], and preoperative blood volume. The control group received intravenous infusion of 100 mL saline at 15 minutes before operation and 3, 6, and 24 hours after the first administration. The single-dose TXA group received intravenous infusion of 1 g TXA (dissolved in 100 mL saline) at 15 minutes before operation, followed by an equal amount of saline at each time point after the first administration. The multiple-dose TXA group received intravenous infusion of 1 g TXA (dissolved in 100 mL saline) at each time point. The relevant indicators were recorded and compared between groups to evaluate the effectiveness and safety of TXA, including hospital stays, operation time, occurrence of infection; the occurrence of lower extremity deep vein thrombosis, intermuscular vein thrombosis, and pulmonary embolism at 1 week after operation; the lowest postoperative Hb value and Hb reduction rate, the difference (change value) between pre- and post-operative APTT, PT, Fib, and INR; D-dimer and IL-6 at 24 and 72 hours after operation; total blood loss, intraoperative blood loss, hidden blood loss, drainage flow during 48 hours after operation, and postoperative blood transfusion. Results ① TXA efficacy evaluation: the lowest Hb value in the control group was significantly lower than that in the other two groups (P<0.05), and there was no significant difference between the single- and multiple-dose TXA groups (P>0.05). The Hb reduction rate, total blood loss, intraoperative blood loss, drainage flow during 48 hours after operation, and hidden blood loss showed a gradual decrease trend in the control group, single-dose TXA group, and multiple-dose TXA group. And differences were significant (P<0.05) in the Hb reduction rate and drainage flow during 48 hours after operation between groups, and the total blood loss and hidden blood loss between control group and other two groups. ② TXA safety evaluation: no lower extremity deep vein thrombosis or pulmonary embolism occurred in the three groups after operation, but 3, 4, and 2 cases of intermuscular vein thrombosis occurred in the control group, single-dose TXA group, and multiple-dose TXA group, respectively, and the differences in the incidences between groups were not significant (P>0.05). There was no significant difference in the operation time between groups (P>0.05). But the length of hospital stay was significantly longer in the control group than in the other groups (P<0.05); there was no significant difference between the single- and multiple-dose TXA groups (P>0.05). ③ Effect of TXA on blood coagulation and inflammatory response: the incisions of the 3 groups healed by first intention, and no infections occurred. The differences in the changes of APTT, PT, Fib, and INR between groups were not significant (P>0.05). The D-dimer and IL-6 in the three groups showed a trend of first increasing and then decreasing over time, and there was a significant difference between different time points in the three groups (P<0.05). At 24 and 72 hours after operation, there was no significant difference in D-dimer between groups (P>0.05), while there was a significant difference in IL-6 between groups (P<0.05). Conclusion Multiple intravenous applications of TXA can reduce perioperative blood loss and shorten hospital stays in patients undergoing open reduction and internal fixation of complex tibial plateau fractures, provide additional fibrinolysis control and ameliorate postoperative inflammatory response.
ObjectiveTo investigate the safety and effectiveness of using tranexamic acid in total knee arthroplasty (TKA). MethodsBetween May 2012 and May 2013, 88 patients (88 knees) with degenerative osteoarthritis underwent primary TKA and were divided into 2 groups (n=44) according to whether use of tranexamic acid (15 mg/kg) or not. Seventy-seven patients (39 in trial group and 38 in control group) were enrolled in this study except 11 patients who failed to be followed up. There was no significant difference in gender, age, disease duration, body mass index, osteoarthritis grading, and preoperative general data of laboratory examination between 2 groups (P > 0.05). The following indexes were recorded and compared between 2 groups: intraoperative tourniquet time, intraoperative blood loss, postoperative drainage volume during 24 hours, total drainage volume, hidden blood loss, total blood loss, the number of transfusion, postoperative haemoglobin (Hb) at 3 days, postoperative D-dimer at 24 hours, ecchymosis, and deep venous thrombosis (DVT). ResultsNo statistically significant difference was found in intraoperative tourniquet time and intraoperative blood loss between 2 groups (P > 0.05). The postoperative drainage volume during 24 hours, total drainage volume, hidden blood loss, total blood loss, and postoperative D-dimer at 24 hours in trial group were significantly lower than those in control group (P < 0.05). The postoperative Hb at 3 days in trial group was significantly higher than that in control group (t=4.815, P=0.000). Three cases (7.7%) of trial group and 4 cases (10.5%) of control group were given blood transfusion, showing no significant difference (P > 0.05); DVT occurred in 3 cases of 2 groups repectively (7.7%, 7.9%), showing no significant difference (P > 0.05). Extremity ecchymosis occurred in 1 case (2.6%) of trial group and in 7 cases (18.4%) of control group, showing significant difference (χ2=0.029, P=0.026). ConclusionUse of tranexamic acid can significantly reduce blood loss and does not increase the risk of DVT after TKA.
ObjectiveTo evaluate the effectiveness and safety of tranexamic acid (TXA) combined with intraoperative controlled hypotension (ICH) for reducing perioperative blood loss in primary total hip arthroplasty (THA).MethodsThe clinical data of 832 patients with initial THA due to osteonecrosis of femoral head between January 2017 and July 2020 were retrospectively analyzed. All patients received TXA treatment, and 439 patients (hypotension group) received ICH treatment with an intraoperative mean arterial pressure (MAP) below 80 mm Hg (1 mm Hg=0.133 kPa) while 393 patients (normotension group) received standard general anesthesia with no special invention on blood pressure. There was no significant difference in age, gender, body mass index, American Society of Anesthesiologists (ASA) classification, basic arterial pressure, hip range of motion, internal diseases, preoperative hemoglobin (HB) and hematocrit (HCT), coagulation function, surgical approach, and TXA dosage between the two groups (P>0.05). The perioperative blood loss and blood transfusion, anesthesia and operation time, hospitalization stay, postoperative range of motion, and complications were recorded and compared between the two groups. The patients were further divided into MAP<70 mm Hg group (group A), MAP 70-80 mm Hg group (group B), and normotension group (group C). The perioperative blood loss and postoperative complications were further analyzed to screen the best range of blood pressure.ResultsThe intraoperative MAP, total blood loss, dominant blood loss, recessive blood loss, blood transfusion rate and blood transfusion volume, anesthesia time, operation time, and hospitalizarion stay in the hypotension group were significantly lower than those in the normotension group (P<0.05). The postoperative hip flexion range of motion in the hypotension group was significantly better than that of the normotension group (Z=2.743, P=0.006), but there was no significant difference in the abduction range of motion between the two groups (Z=0.338, P=0.735). In terms of postoperative complications, the incidence of postoperative hypotension in the hypotension group was significantly higher than that in the normotension group (χ2=6.096, P=0.014), and there was no significant difference in the incidence of other complications (P>0.05). There was no stroke, pulmonary embolism, or deep vein thrombosis in the two groups, and no patients died during hospitalization. Subgroup analysis showed that there was no significant difference in total blood loss, dominant blood loss, and recessive blood loss in groups A and B during the perioperative period (P>0.05), which were significantly lower than those in group C (P<0.05). There was no significant difference in blood transfusion rate, blood transfusion volume, and incidence of acute myocardial injury between 3 groups (P>0.05); the incidence of acute kidney injury in group A was significantly higher than that in group B, and the incidence of postoperative hypotension in group A was significantly higher than that in groups B and C (P<0.05), but no significant difference was found between groups B and C (P>0.05).ConclusionThe combination of TXA and ICH has a synergistic effect. Controlling the intraoperative MAP at 70-80 mm Hg can effectively reduce the perioperative blood loss during the initial THA, and it is not accompanied by postoperative complications.