• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "deep venous thrombosis" 20 results
        • Current situation and trend of diagnosis and treatment of thrombotic iliac vein stenosis

          ObjectiveTo summarize strategy of diagnosis and treatment of thrombotic iliac vein stenosis in recent years.MethodThe relevant literatures in recent 5 years on the current status and trend of diagnosis and treatment of the thrombotic iliac vein stenosis were reviewed.ResultsAt present, the diagnostic methods of thrombotic iliac vein stenosis mainly included that the multi-slice spiral CT, venography, intracavitary ultrasound, magnetic resonance imaging, color Doppler ultrasound and other imaging examinations, each of which had its advantages and disadvantages. There were still no uniform criteria whether a filter should be placed, whether the stents should and how to be placed, and when to intervene in the patients with acute thrombotic iliac vein stenosis. There was no definite conclusion when and how to effectively intervene in the patients with chronic thrombotic iliac vein stenosis.ConclusionsIncidence of thrombotic iliac vein stenosis is high and sequela is severe. Early diagnosis and reasonable treatment are very important. Only strictly grasping indications, combining medical technology and patient’s condition, and adopting appropriate treatment strategy, can make patients’ maximal benefit.

          Release date:2019-03-18 05:29 Export PDF Favorites Scan
        • Significance of one-stage removal of iliac vein obstruction in the treatment of acute left lower extremity deep venous thrombosis

          ObjectiveTo investigate the significance of catheter thrombolysis combined with one-stage iliac vein percutaneous transluminal angioplasty (or stent implantation) in the treatment of acute left lower extremity deep venous thrombosis secondary to Cockett syndrome.MethodsForty-one cases of Cockett syndrome complicated with acute left lower extremity deep vein thrombosis were retrospectively analyzed and summarized in our hospital from January 2016 to June 2019. Catheter directed thrombolysis was performed under the protection of filter, and percutaneous transluminal angioplasty or stent implantation was performed in the first stage of the iliac vein stenosis or occlusion after thrombolysis. Compared the circumference of upper and lower legs of 15 cm above and below patella of the healthy and affected limbs, before and after treatment, and analyzed the venous patency rate.ResultsThe average time of using thrombolytic catheter were (7±3) days, and the average dosage of urokinase was (358.32±69.38) ×104 U. A total of thirty-five Bard stents were implanted (35 cases), four cases underwent percutaneous transluminal angioplasty, and two cases gave up treatment. Before and after treatment, the circumference difference of the higher leg, the circumference difference of the lower leg, and the venous patency were significantly different before and after thrombolysis (P<0.01). The venous patency rate was 58%–75% in this group, and the average venous patency rate was (61±10)%. There was no severe bleeding complication occurred. Thirty-five patients were followed up for 3–26 months, the preservation rate of the valve was 82.86% (29/35), and the first patency rate of iliac vein was 100% (39/39). During the follow-up period, thrombosis recurred in one case of untreated iliac vein, and acute thrombosis in the right side of one case was caused by long iliac vein stent entering the inferior vena cava. No pulmonary embolism was found.ConclusionOn the basis of catheter thrombolysis, one stage removal of iliac vein obstruction in the treatment of acute left lower extremity deep venous thrombosis can relieve the clinical symptoms, reduce the recurrence rate of thrombosis, and reduce the occurrence of deep vein thrombosis syndrome after catheter thrombolysis.

          Release date:2019-11-25 03:18 Export PDF Favorites Scan
        • Research status and expectation of stability of deep venous thrombosis

          Objective To summarize the research about the stability of deep venous thrombosis (DVT) of the lower extremity in recent years. Methods The literatures about the stability of DVT of lower limbs at home and abroad in recent years were reviewed. Results There are few studies on the stability of DVT at home and abroad, which limited on the floating thrombus. Conclusion The stability of DVT can be effectively evaluated by SOMATOM Force CT (The third generation dual source CT).

          Release date:2017-04-18 03:08 Export PDF Favorites Scan
        • Research progress on the hemodynamic mechanism and application of ankle pump exercise in preventing deep vein thrombosis

          Ankle pump exercise (APE) is one of the basic measures to prevent the formation of deep vein thrombosis, which has been widely recognized for its advantages of simplicity, safety, and ease of perform. However, there is still controversy regarding the frequency, duration, angle, position, and adjunctive exercise of APE. This article will review the hemodynamic and hemorheological effects of APE for the prevention of DVT, the current status of clinical application, and new advances in adjunctive APE, in order to provide methods and guidance for clinical staff.

          Release date:2023-08-24 10:24 Export PDF Favorites Scan
        • Clinical Application of Determination of Lower Extremity Venous Pressure in The Diagnosis and Treatment of Lower Extremity Deep Vein Thrombosis

          ObjectiveTo evaluate the value of clinical application of determination of lower venous pressure in the diagnosis and treatment of deep venous thrombosis (DVT). MethodsThe 90 patients with DVT of unilateral lower limb who were admitted by using color Doppler or deep veins of lower limb angiography in our hospital during the period of 2013 July to 2014 June were selected and as the research object (case group), 37 cases were male, 53 cases were female; the age was 18-84 years old, mean age was 59.48 years old. According to the development of disease, 90 cases were divided into acute 30 cases, subacute 30 cases, and chronic 30 cases; and according to the pathological types were divided into the central type in 30 cases, 30 cases of peripheral type, and 30 cases of mixed type. At the same time the without lower extremity DVT volunteers of 20 cases were selected as normal control group, including male 9 cases, female 11 cases; age was 21-65 years old, average age was 38.7 years old. The static venous pressure (P0), dynamic venous pressure (P00), and decreased pressure ratio (Pd) of double lower limbs of participants in 2 groups were determinated and comparative analyzed. ResultsThe P0 and P00 of patients with different development of disease and pathological types of the case group were higher than those of the normal control group (P < 0.01), and the Pd was lower than that of the normal control group (P < 0.01). In case group, the P0 and P00 of acute phase were higher than those of the normal control group (P < 0.01), the P0 of central type was higher than that of the peripheral type and mixed type (P < 0.01), and the Pd central type was lower than that of mixed type (P < 0.01). The above 3 indexes' differences of double lower limbs in the normal control group had no statistical significance (P > 0.01). In case group, the P0 and P00 of ipsilateral limb in different development of disease and pathological types were higher than those of the healthy limb, and the Pd were lower than that of the healthy limb (P < 0.01). ConclusionsLower extremity venous pressure measurements can be used in clinical detection for early lower limb DVT, and can be used as the objective index of clinical evaluation curative effect for the treatment of DVT. It is a simple and practical clinical detection method.

          Release date: Export PDF Favorites Scan
        • Construction and validation of a model for predicting risk of post-thrombotic syndrome in patients with acute lower extremity deep venous thrombosis after interventional therapy

          Objective To establish and validate a risk prediction model for post-thrombotic syndrome (PTS) in patients after interventional treatment for acute lower extremity deep vein thrombosis (LEDVT). MethodsA retrospective study was conducted to collect data from 234 patients with acute LEDVT who underwent interventional treatment at Xuzhou Central Hospital from December 2017 to June 2022, serving as the modeling set. Factors influencing the occurrence of PTS were analyzed, and a nomogram was developed. An additional 98 patients from the same period treated at the Xuzhou Cancer Hospital were included as an external validation set to assess the reliability of the model. ResultsAmong the patients used to establish the model, the incidence of PTS was 25.2% (59/234), while in the validation set was 31.6% (31/98). Multivariate logistic regression analysis of the modeling set identified the following factors as influencing PTS: age (OR=1.076, P=0.001), BMI (OR=1.163, P=0.004), iliac vein stent placement (OR=0.165, P<0.001), history of varicose veins (OR=5.809, P<0.001), and preoperative D-dimer level (OR=1.341, P<0.001). These 5 factors were used to construct the risk prediction model. The area under the receiver operating characteristic (ROC) curve (AUC) of the model was 0.869 [95%CI (0.819, 0.919)], with the highest Youden index of 0.568, corresponding to a sensitivity of 79.7% and specificity of 77.1%. When applied to the validation set, the AUC was 0.821 [95%CI (0.734, 0.909)], with sensitivity of 77.4%, specificity of 76.1%, and accuracy of 76.6%. ConclusionsThe risk prediction model for PTS established in this study demonstrates good predictive performance. The included parameters are simple and practical, providing a useful reference for clinicians in the preliminary screening of high-risk PTS patients.

          Release date:2025-07-17 01:33 Export PDF Favorites Scan
        • AngioJet mechanical thrombectomy in treatment of acute deep venous thrombosis of lower extremities

          ObjectiveTo evaluate the effect of percutaneous mechanical thrombectomy (PMT) with AngioJet mechanical thrombus aspiration system for the acute deep venous thrombosis (DVT) of lower extremities. MethodsThe clinical data of 72 patients (72 limbs) with acute DVT who underwent PMT with AngioJet system from December 2015 to June 2018 in our hospital were analyzed retrospectively. ResultsOf the 72 cases, 30 cases underwent PMT alone, while 42 cases underwent PMT combined with catheter directed thrombolysis (CDT). Thrombus clearance rate of grade Ⅲ was obtained in 49 cases (68.05%), grade Ⅱ in 20 cases (27.78%), and grade Ⅰ in 3 cases (4.17%). Thirty-five cases were found with May-Thurner syndrome, and 34 cases were treated with stenting while 1 case complicated with iliac bleeding. The rates of PTS were 1.41% (1/71), 3.57% (2/56), 4.55% (2/44), and 20.00% (3/15) at 3-month, 6-month, 1-year, and 2-year after intervention, respectively. The deep vein patency rates were 86.36% (38/44) and 80.00% (12/15) at 1-year and 2-year after intervention, respectively. The iliac stent patency rates were 100% (23/23) and 87.50% (7/8) at 1-year and 2-year after intervention, respectively. ConclusionThe effect of PMT assisted with CDT for the acute DVT of lower extremities is satisfactory, but its long-term efficacy needs to be further observed.

          Release date: Export PDF Favorites Scan
        • Risk factors of perioperative deep venous thrombosis of lower extremities in elderly patients with femoral neck fracture

          ObjectiveTo investigate the incidence of perioperative deep venous thrombosis (DVT) of lower extremities and its risk factors in elderly patients with femoral neck fracture. Methods The clinical data of 4 109 elderly patients with femoral neck fracture admitted between August 2012 and November 2020 and met the selection criteria were retrospectively analyzed. Among them, there were 1 137 males and 2 972 females; their ages ranged from 65 to 101 years, with an average of 77.0 years. The time from fracture to admission ranged from 1 to 360 hours, with an average of 35.2 hours. There were 1 858 cases of hemiarthroplasty, 1 617 cases of total hip arthroplasty, and 634 cases of internal fixation surgery. The preoperative age-adjusted Charlson comorbidity index (aCCI) was 4 (3, 5). Perioperative DVT occurred in 857 cases (20.9%). Univariate analysis was performed on age, gender, body mass index, fracture side, time from fracture to admission, operation type, anesthesia type, blood transfusion, blood pressure after admission, and preoperative aCCI in patients with and without perioperative DVT, and logistic regression analysis was used to screen the risk factors of perioperative DVT in elderly patients with femoral neck fracture. ResultsUnivariate analysis showed that there were significant differences in age, gender, time from fracture to admission, operation type, and preoperative aCCI between the two groups (P<0.05). Further logistic regression analysis showed that age>75 years, female patients, time from fracture to admission>24 hours, and preoperative aCCI>5 were risk factors for perioperative DVT (P<0.05). Conclusion Elderly patients with femoral neck fracture have a higher incidence of perioperative DVT. The advanced aged and female patients, patients with longer fracture time and more comorbidities need to pay special attention to the prevention of perioperative DVT to minimize the occurrence of DVT during femoral neck fractures.

          Release date:2024-12-13 10:50 Export PDF Favorites Scan
        • Endovascular intervention for iliac vein compression syndrome with acute lower extremity deep vein thrombosis

          ObjectiveTo evaluate the efficacy and safety of intracavitary treatment for iliac vein compression syndrome(IVCS)with acute lower extremity deep venous thrombosis (DVT).MethodsThe clinical data of 57 patients with IVCS and lower extremity DVT, who undergoing with stent implantation, balloon expansion and Angiojet rheolytic thrombectomy from June 2015 to June 2018, were retrospectively analyzed. The effect of treatment was evaluated by the changes of thigh circumference difference between the affected side and the healthy side, and the thrombosis clearance rate in the operating. In addition, the incidence of post-thrombotic syndrome (PTS) and stent patency rate were analyzed after long-term follow-up based on the change of Villaita scale score and ultrasound examination of lower extremity veins.ResultsThe success rate of surgical technique was 100%, and there was no pulmonary embolism during operating and postoperative. Lower extremity deep vein thrombosis clearance levels Ⅲ 48 cases (84.2%), Ⅱ 9 cases (15.8%), the changes of thigh circumference difference between the affected side and the healthy side from preoperative (5.8±1.7) cm to (3.7±1.0) cm. One year follow-up after operation, the primary patency rate of stent was 86.0% and PTS occurred in 8 patients (14.0%).ConclusionStent implantation, balloon expansion and Angiojet rheolytic thrombectomy for IVCS with acute lower extremity DVT is a safe, effective with low incidence of complications and efficient thrombus clearance.

          Release date:2020-04-28 02:46 Export PDF Favorites Scan
        • Effect of Catheter Directed Thrombolysis on Acute Deep Venous Thrombosis in Lower Extremity

          ObjectiveTo explore the effect of catheter directed thrombolysis (CDT) in treatment of acute deep venous thrombosis (ADVT) in lower extremity. MethodsLimb circumference at 15 cm above and below the knee at affected side, as well as patency improvement score of 46 patients with ADVT in lower extremity, who received treatment in The Rocket Army General Hospital of PLA between January 2014 and October 2015, were colleted retrospectively, to analyze the effect of CDT in treatment of ADVT in lower extremity. ResultsAll patients were placed catheter successfully, 5 patients were placed catheter by 'contralateral mountain' technique retrograde, 40 patients were placed catheter through the limb popliteal vein at affected side anterograde, guiding by ultrasound, 1 patient was placed catheter through femoral vein at affected side. All of 46 patients got successful thrombolysis, and thrombolysis time was (4.7±1.8) d (3-12 d). There were 8 patients suffered from complications in different situation, and got treatment of drug withdrawal or tube drawing all ease, no one died. Compared with before CDT treatment in same group, the limb circumference at 15 cm above (P=0.028, P=0.017, P=0.031) and below (P=0.035, P=0.038, P=0.047) the knee at affected side, and patency improvement score (P=0.023, P=0.028, P=0.031) in all patients group, 22-45 years group, and 46-74 years group were all lower after CDT treatment. The limb circumference at 15 cm above (P=0.073, P=0.387, P=0.358) and below (P=0.416, P=0.625, P=0.253) the knee at affected side after CDT treatment were not differed with corresponding indexes of healthy side in the same group of all patients group, 22-45 years group, and 46-74 years group. Ultrasound after treatment showed that, blood vessel recanalization occurred in 15 patients (32.6%), partial blood vessel recanalization occurred in 28 patients (60.9%), but thrombus of 3 patients (6.5%) didn't removed, the total effective rate was 93.5% (43/46). Forty three patients were followed up for 1-24 months, the median is 18-month. During follow-up period, skin color obviously deepened after the activity occurred in 5 patients, obvious limb acid bilges occurred in 19 patients, vein thrombosis (DVT) recurred in 9 patients of 28 patients with partial blood vessel recanalization, in addition, thrombosis syndrome (PTS) occurred in 11 patients. ConclusionCDT is the most direct and effective way to treat ADVT.

          Release date:2016-10-21 08:55 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜