• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "bone marrow" 81 results
        • Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering

          ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.

          Release date:2022-05-07 02:02 Export PDF Favorites Scan
        • EFFECT OF BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR MATRIX SCAFFOLD ON CHONDROGENIC DIFFERENTIATION OF MARROW CLOT AFTER MICROFRACTURE OF BONE MARROW STIMULATION IN VITRO

          Objective To evaluate the feasibility and validity of chondrogenic differentiation of marrow clot after microfracture of bone marrow stimulation combined with bone marrow mesenchymal stem cells (BMSCs)-derived extracellular matrix (ECM) scaffold in vitro. Methods BMSCs were obtained and isolated from 20 New Zealand white rabbits (5-6 months old). The 3rd passage cells were cultured and induced to osteoblasts, chondrocytes, and adipocytes in vitro, respectively. ECM scaffold was manufactured using the 3rd passage cells via a freeze-dying method. Microstructure was observed by scanning electron microscope (SEM). A full-thickness cartilage defect (6 mm in diameter) was established and 5 microholes (1 mm in diameter and 3 mm in depth) were created with a syringe needle in the trochlear groove of the femur of rabbits to get the marrow clots. Another 20 rabbits which were not punctured were randomly divided into groups A (n=10) and B (n=10): culture of the marrow clot alone (group A) and culture of the marrow clot with transforming growth factor β3 (TGF-β3) (group B). Twenty rabbits which were punctured were randomly divided into groups C (n=10) and D (n=10): culture of the ECM scaffold and marrow clot composite (group C) and culture of the ECM scaffold and marrow clot composite with TGF-β3 (group D). The cultured tissues were observed and evaluated by gross morphology, histology, immunohistochemistry, and biochemical composition at 1, 2, 4, and 8 weeks after culture. Results Cells were successfully induced into osteoblasts, chondrocytes, and adipocytes in vitro. Highly porous microstructure of the ECM scaffold was observed by SEM. The cultured tissue gradually reduced in size with time and disappeared at 8 weeks in group A. Soft and loose structure developed in group C during culturing. Chondroid tissue with smooth surface developed in groups B and D with time. The cultured tissue size of groups C and D were significantly larger than that of group B at 4 and 8 weeks (P lt; 0.05); group D was significantly larger than group C in size (P lt; 0.05). Few cells were seen, and no glycosaminoglycan (GAG) and collagen type II accumulated in groups A and C; many cartilage lacunas containing cells were observed and more GAG and collagen type II were synthesized in groups B and D. The contents of GAG and collagen increased gradually with time in groups B and D, especially in group D, and significant difference was found between groups B and D at 4 and 8 weeks (P lt; 0.05). Conclusion The BMSCs-derived ECM scaffold combined with the marrow clot after microfracture of bone marrow stimulation is effective in TGF-β3-induced chondrogenic differentiation in vitro.

          Release date:2016-08-31 04:07 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY OF REPAIRING BONE DEFECT WITH TISSUE ENGINEERED BONE SEEDED WITH AUTOLOGOUS RED BONE MARROW AND WRAPPED BY PEDICLED FASCIAL FLAP

          Objective To investigate the effect of repairing bone defect with tissue engineered bone seeded with the autologous red bone marrow (ARBM) and wrapped by the pedicled fascial flap and provide experimental foundation for cl inicalappl ication. Methods Thirty-two New Zealand white rabbits (male and/or female) aged 4-5 months old and weighing2.0-2.5 kg were used to make the experimental model of bilateral 2 cm defect of the long bone and the periosteum in the radius. The tissue engineered bone was prepared by seeding the ARBM obtained from the rabbits on the osteoinductive absorbing material containing BMP. The left side of the experimental model underwent the implantation of autologous tissue engineered bone serving as the control group (group A). While the right side was designed as the experimental group (group B), one 5 cm × 3 cm fascial flap pedicled on the nameless blood vessel along with its capillary network adjacent to the bone defect was prepared using microsurgical technology, and the autologous tissue engineered bone wrapped by the fascial flap was used to fill the bone defect. At 4, 8, 12, and 16 weeks after operation, X-ray exam, absorbance (A) value test, gross morphology and histology observation, morphology quantitative analysis of bone in the reparative area, vascular image analysis on the boundary area were conducted. Results X-ray films, gross morphology observation, and histology observation: group B was superior to group A in terms of the growth of blood vessel into the implant, the quantity and the speed of the bone trabecula and the cartilage tissue formation, the development of mature bone structure, the remolding of shaft structure, the reopen of marrow cavity, and the absorbance and degradation of the implant. A value: there was significant difference between two groups 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those three time points in groups A and B (P lt; 0.05). For the ratio of neonatal trabecula area to the total reparative area, there were significant differences between two groups 4, 8, 12, and 16 weeks after operation (P lt; 0.05), and there were significant differences among those four time points in group B (P lt; 0.05).For the vascular regenerative area in per unit area of the junctional zone, group B was superior to group A 4, 8, 12, and 16 weeks after operation (P lt; 0.05). Conclusion Tissue engineered bone, seeded with the ARBM and wrapped by the pedicled fascial flap, has a sound reparative effect on bone defect due to its dual role of constructing vascularization and inducing membrane guided tissue regeneration.

          Release date:2016-09-01 09:08 Export PDF Favorites Scan
        • Role of R-spondin 2 on osteogenic differentiation of bone marrow mesenchymal stem cells and bone metabolism in ovariectomized mice

          Objective To investigate the effects of R-spondin 2 (Rspo2) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone mineral content in ovariectomized mice. Methods BMSCs were extracted from the bone marrow of the long bones of 7 4-week-old female C57BL/6 mice using whole bone marrow culture and passaged. After the cell phenotype was identified by flow cytometry, the 3rd generation cells were co-cultured with 10, 20, 40, 80, and 100 nmol/L Rspo2. Then, the cell activity and proliferative capacity were determined by cell counting kit 8 (CCK-8), and the intervention concentration of Rspo2 was screened for the subsequent experiments. The osteogenic differentiation ability of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA levels of osteogenesis-related genes [RUNX family transcription factor 2 (Runx2), collagen type Ⅰ alpha 1 (Col1), osteocalcin (OCN)] were detected by real-time fluorescence quantitative PCR (RT-qPCR). In addition, 18 10-week-old female C57BL/6 mice were randomly divided into sham operation group (sham group), ovariectomy group (OVX group), and OVX+Rspo2-intervention group (OVX+Rspo2 group), with 6 mice in each group. The sham group only underwent bilateral back incision and suturing, while the other two groups established osteoporosis mouse models by bilateral ovarian castration. Then, the mice were given a weekly intraperitoneal Rspo2 (1 mg/kg) treatment in OVX+Rspo2 group and saline at the same dosage in sham group and OVX group. After 12 weeks of treatment, the body mass and uterus mass of the mice were weighed in the 3 groups to assess whether the OVX model was successfully prepared; the tibia bones were stained with HE and immunohistochemistry staining to observe the changes in tibial bone mass and the expression level of Runx2 protein in the bone tissues. Blood was collected to detect the expressions of bone metabolism markers [ALP, OCN, type Ⅰ procollagen amino-terminal peptide (PINP)] and bone resorption marker [β-collagen degradation product (β-CTX)] by ELISA assay. Micro-CT was used to detect the bone microstructure changes in the tibia, and three-dimensional histomorphometric analyses were performed to analyze the trabeculae thickness (Tb.Th), trabeculae number (Tb.N), trabeculae separation (Tb.Sp), and bone volume fraction (BV/TV). Results CCK-8 assay showed that Rspo2 concentrations below 80 nmol/L were not cytotoxic (P>0.05), and the cell viability of 20 nmol/L Rspo2 group was significantly higher than that of the control group (P<0.05). Based on the above results, 10, 20, and 40 nmol/L Rspo2 were selected for subsequent experiments. ALP staining showed that the positive cell area of each concentration of Rspo2 group was significantly larger than that of the control group (P<0.05), with the highest showed in the 20 nmol/L Rspo2 group. The expression levels of the osteogenesis-related genes (Runx2, Col1, OCN) significantly increased, and the differences were significant between Rspo2 groups and control group (P<0.05) except for Runx2 in the 40 nmol/L Rspo2 group. In animal experiments, all groups of mice survived until the completion of the experiment, and the results of the body mass and uterus mass after 12 weeks of treatment showed that the OVX model was successfully prepared. Histological and immunohistochemical staining showed that the sparseness and connectivity of bone trabecula and the expression of Runx2 in the OVX group were lower than those in the sham group, whereas they were reversed in the OVX+Rspo2 group after treatment with Rspo2, and the differences were significant (P<0.05). ELISA assay showed that compared with the sham group, the serum bone metabolism markers in OVX group had an increase in ALP and a decrease in PINP (P<0.05). After Rspo2 intervention, PINP expression significantly reversed and increased, with significant differences compared to the sham group and OVX group (P<0.05). The bone resorption marker (β-CTX) was significantly higher in the OVX group than in the sham group (P<0.05), and it was significantly decreased in the OVX+Rspo2 group when compared with the OVX group (P<0.05). Compared with the sham group, Tb.Th, Tb.N, and BV/TV significantly decreased in the OVX group, while Tb.Sp significantly increased (P<0.05); after Rspo2 intervention, all of the above indexes significantly improved in the OVX+Rspo2 group (P<0.05) except Tb.Th. Conclusion Rspo2 promotes differentiation of BMSCs to osteoblasts, ameliorates osteoporosis due to estrogen deficiency, and promotes bone formation in mice.

          Release date:2024-12-13 10:50 Export PDF Favorites Scan
        • Role and mechanism of cAMP/Ca2+ signal pathway in differentiation of bone marrow mesenchymal stem cells into neuronal cells induced by salidroside

          To investigate the mechanism of cAMP/Ca2+ signaling pathway inducing bone marrow mesenchymal stem cells to differentiate into neuronal cells, we cultured the bone marrow mesenchymal stem cells D1 cells in the present study. D1 cells were divided into two groups: control group and salidroside inducing groups. Control group was cultured with complete culture solution D/F12, while salidroside inducing groups were induced with 100 mg·L–1 salidroside for different time periods (24, 48 and 72 hours). PCR-array assay was used to detect expression of 84 calcium related mRNA, and significantly different genes were chosen to analyse. As a result, there were 4 significantly upregulated mRNAs inclu-ding DNA damage-inducible transcript 3 (Ddit3), heat shock protein 5 (Hspa5), protein phosphatase 1 regulatory subunit (Ppp1r15a) and prostaglandin-endoperoxide synthase 2 (Ptgs-2), and 4 significantly downregulated mRNAs including glucagon (Gcg), interleukin 2 (Il2), tumor necrosis factor (Tnf) and somatostatin (Sst) in the cAMP/Ca2+ signaling pathway. They probably had an effect on the process of salidroside induced D1 cells differentiating into neuronal cells.

          Release date:2017-06-19 03:24 Export PDF Favorites Scan
        • DYNAMIC CHANGES OF GENE EXPRESSION PROFILES DURING CARDIOMYOGENESIS OF HUMANMARROW MESENCHYMAL STEM CELLS/

          Objective To analyze the changes of gene expression profiles during the process that human bonemarrow mesenchymal stem cells (hBMSCs) are induced to differentiate into cardiomyogenic cells with 5-azacytidine (5-aza). Methods hBMSCs were isolated from marrow of obsolete ribs and induced with 5-aza. Then immunocytochemicalstaining was used to detect the expressions of α-actin, cardiac troponin T (cTnT), and connexin 43, and the percentage ofcTnT positive cells was tested with flow cytometry. In the process of differentiation, variation of gene expression was screenedwith Genechi ps Operating System of human gene expression profiles. And the differentially expressed genes were functionallyanalyzed and hierarchical clustered. Results When BMSCs were induced in vitro with 5-aza, part of the cells turnedinto myogenic cells morphologically. Before induction, immunocytochemical staining for α-actin and cTnT showed sl ightpositive and for connexin 43 showed negative. While after 3 weeks of induction, immunocytochemical staining for α-actin,cTnT, and connexin 43 showed all positive. With flow cytometry, the percentage of cTnT positive cells was 7.43% ± 0.02%before induction, but it was 49.64% ± 0.05% after induction. During differentiation, 1 814 differentially expressed geneswere reported by gene chi ps. Of them, 647 genes were divided into 5 groups with hierarchical clustering. They had variousbiological functions, involving signal transduction, cell metabol ism, prol iferation, differentiation, development, andtopogenesis. Conclusion hBMSCs can differentiate into cardiomyogenic cells with the induction of 5-aza in vitro. Multi plegenes related with signal transduction, transcri ption, and growth factors are involved during this process.

          Release date:2016-08-31 04:23 Export PDF Favorites Scan
        • Preparation of Elastic Porous Cell Scaffold Fabricated with Combined Polydimethylsiloxane (PDMS) and Hydroxyapatite (HA)

          Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.

          Release date: Export PDF Favorites Scan
        • Early effect of graphene oxide-carboxymethyl chitosan hydrogel loaded with interleukin 4 and bone morphogenetic protein 2 on bone immunity and repair

          ObjectiveTo investigate the effect of graphene oxide (GO)-carboxymethyl chitosan (CMC) hydrogel loaded with interleukin 4 (IL-4) and bone morphogenetic protein 2 (BMP-2) on macrophages M2 type differentiation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).MethodsGO solution was mixed with CMC, then the phosphate buffered saline (PBS), IL-4, BMP-2, or IL-4+BMP-2 were added to prepare different GO-CMC hydrogel scaffolds with or without different cytokines under crosslinking agents. The characteristics of pure GO-CMC hydrogel were characterized by gross observation, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR), and the CMC hydrogel was used as control. The sustained release of GO-CMC hydrogels with different cytokines was also tested. Macrophages were isolated and cultured from female Sprague Dawley rats aged 4-5 weeks, and then cultured with GO-CMC hydrogels with and without different cytokines, respectively. CD206 immunofluorescence staining was used to detect the differentiation of macrophages after 24 hours. The 3rd generation of rats BMSCs were cultured with GO-CMC hydrogels with and without different cytokines respectively for osteogenic induction. The early osteogenesis was observed by alkaline phosphatase (ALP) staining after 10 days, and the late osteogenesis was observed by alizarin red staining after 21 days.ResultsGenerally, GO-CMC hydrogel was brown and translucent. SEM showed that the pore diameter and wall thickness of GO-CMC hydrogel were similar to that of CMC hydrogel, but the inner wall roughness increased. FTIR test showed that CMC polymerized to form hydrogel. In vitro, the sustained release experiments showed that the properties of GO-CMC hydrogels loaded with different cytokines were similar. CD206 immunofluorescence detection showed that GO-CMC hydrogels could induce macrophages differentiation into M2-type. ALP and alizarin red staining showed that GO-CMC hydrogels could induce BMSCs osteogenic differentiation, in which GO-CMC hydrogel loaded with IL-4+BMP-2 showed the most significant effect (P<0.05).ConclusionThe GO-CMC hydrogel loaded with IL-4 and BMP-2 can induce macrophages differentiation into M2-type and enhance the ability of BMSCs with osteogenic differentiation in vitro, which provide a new strategy for bone defect repair and immune regulation.

          Release date:2020-08-19 03:53 Export PDF Favorites Scan
        • Construction of three-dimensional dermoid tissue based on cell sheets technology in vitro

          ObjectiveTo explore a new strategy for constructing three-dimensional dermoid tissue in vitro by using cell sheets technology.MethodsRabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated from bone marrow of New Zealand white rabbits and cultured by whole bone marrow adherent method. Human dermal fibroblasts (HDFs) were cultured and passaged in vitro. The 2nd generation rBMSCs and the 3rd generation HDFs were cultured in a culture dish for 2 weeks with cell sheets conditioned medium respectively to obtain a monolayer cell sheets. Human umbilical vein endothelial cells (HUVECs) were inoculated on rBMSCs sheet to construct pre-vascularized cell sheet. During the culture period, the morphological changes of the cell sheet were observed under an inverted phase contrast microscope. At 1, 3, 7, and 14 days, HE staining and CD31 immunofluorescence staining were performed to observe the cell distribution and microvascular network formation. The rBMSCs sheet was used as control. The pre-vascularized cell sheet (experimental group) and rBMSCs sheet (control group) cultured for 7 days were placed in the middle of two HDFs sheets, respectively, to prepare three-dimensional dermoid tissues. After 24 hours of culture, CD31 immunofluorescence staining and collagen type Ⅰ and collagen type Ⅲ immunohistochemical stainings were performed to evaluate cell distribution and collagen expression.ResultsHDFs and rBMSCs sheets were successfully prepared after 2 weeks of cell culture. After inoculation of HUVECs on rBMSCs sheet for 3 days, HUVECs could be seen to rearrange on rBMSCs sheet and forming vacuoles. The reticular structure was visible at 7 days and more obvious at 14 days. The formation of vacuoles between the cell sheets was observed by HE staining, and the vacuoles became more and more obvious, the thickness of the membranes increased significantly with time. CD31 immunofluorescence staining showed the microvascular lumen formation. However, only the thickness of rBMSCs sheet increasing was observed, with no changes in cell morphology or cavitation structure. The three-dimensional dermoid tissue observation showed that the endothelial cells in the experimental group were positive expressions, and the rBMSCs, HDFs, and HUVECs cells were arranged neatly. The endothelial cells were negative expressions and randomly arranged in the control group. The collagen type Ⅰ and collagen type Ⅲ were positive expression in the experimental group and the control group. But compared with control group, experimental group presented a " honeycomb” network connection, where the matrix was distributed regularly, and cells were arranged tightly. The difference in the expression of collagen type Ⅰ and collagen type Ⅲ between the experimental group and the control group was not significant (P>0.05).ConclusionThree-dimensional dermoid tissue is successfully constructed by using cell sheet technology. The cell matrix distribution of the pre-vascularized cell sheet constructed by HUVECs and rBMSCs sheet is relatively regular, which has the potential to form tissue engineered dermis.

          Release date:2020-02-18 09:10 Export PDF Favorites Scan
        • SPIO-labeled Rat Bone Marrow Mesenchymal Stem Cells:Alterations of Biological Activity and Labeling Efficiency Assay In Vitro

          This study aimed to characterize and magnetic resonance imaging (MRI) track the mesenchymal stem cells labeled with polylysine-coated superparamagnetic iron oxide (PLL-SPIO). Rat bone marrow derived mesenchymal stem cells (rMSCs) were labeled with 25, 50 and 100 μg/mL PLL-SPIO for 24 hours. The labeling efficiency was assessed by iron content, Prussian blue staining, electron microscopy and in vitro MR imaging. The labeled cells were also analyzed for cytotoxicity and differentiation potential. Electron microscopic observations and Prussian blue staining revealed that 75%-100% of cells were labeled with iron particles. PLL-SPIO did not show any cytotoxicity up to 100 μg/mL concentration. Both 25 μg/mL and 50 μg/mL PLL-SPIO labeled stem cells did not exhibit any significant alterations in the adipo/osteo/chondrogenic differentiation potential compared to unlabeled control cells. The lower concentration of 25 μg/mL iron labeled cells emitted an obvious dark signal in T1W, T2WI and T2*WI MR image. The novel PLL-SPIO enables to label and track rMSCs for in vitro MRI without cellular alteration. Therefore PLL-SPIO may potentially become a better MR contrast agent especially in tracking the transplanted stem cells and other cells without compromising cell functional quality.

          Release date: Export PDF Favorites Scan
        9 pages Previous 1 2 3 ... 9 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜