• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Author
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Author "徐桂芝" 36 results
        • Effects of 40 Hz light flicker stimulation on hippocampal-prefrontal neural activity characteristics during working memory tasks in Alzheimer’s disease model rats

          40 Hz light flicker stimulation is deemed to hold considerable promise in the treatment of Alzheimer’s disease (AD). However, whether its long-term effect can improve working memory and its related mechanisms remains to be further explored. In this study, 21 adult Wistar rats were randomly divided into the AD light-stimulation group, the AD group and the control group. AD models were established in the first two of these groups, with the light-stimulation group receiving long-term 40 Hz light flicker stimulation. Working memory performance across groups was subsequently evaluated using the T-maze task. To investigate the potential neural mechanisms underlying the effects of 40 Hz light stimulation on working memory, we examined changes in neuronal excitability within the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as alterations in inter-regional synchronization of neural activity. The findings demonstrated that prolonged 40 Hz light stimulation significantly improved working memory performance in AD model rats. Furthermore, the intervention enhanced the synchronization of neural activity between the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as the efficiency of information transfer, primarily mediated by theta and low-frequency gamma oscillations. This study provides theoretical support for exploring the mechanisms of 40 Hz light flicker stimulation and its further clinical application in the prevention and treatment of Alzheimer’s disease.

          Release date: Export PDF Favorites Scan
        • Effects of virtual reality visual experience on brain functional network

          With the wide application of virtual reality technology and the rapid popularization of virtual reality devices, the problem of brain fatigue caused by prolonged use has attracted wide attention. Sixteen healthy subjects were selected in this study. And electroencephalogram (EEG) signals were acquired synchronously while the subjects watch videos in similar types presented by traditional displayer and virtual reality separately. Two questionnaires were conducted by all subjects to evaluate the state of fatigue before and after the experiment. The mutual correlation method was selected to construct the mutual correlation brain network of EEG signals before and after watching videos in two modes. We also calculated the mutual correlation coefficient matrix and the mutual correlation binary matrix and compared the average of degree, clustering coefficient, path length, global efficiency and small world attribute during two experiments. The results showed that the subjects were easier to get fatigue by watching virtual reality video than watching video presented by traditional displayer in a certain period of time. By comparing the characteristic parameters of brain network before and after watching videos, it was found that the average degree value, the average clustering coefficient, the average global efficiency and the small world attribute decreases while the average path length value increased significantly. In addition, compared to traditional plane video, the characteristic parameters of brain network changed more greatly after watching the virtual reality video with a significant difference (P < 0.05). This study can provide theoretical basis and experimental reference for analyzing and evaluating brain fatigue induced by virtual reality visual experience.

          Release date:2020-06-28 07:05 Export PDF Favorites Scan
        • A review of brain-like spiking neural network and its neuromorphic chip research

          Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.

          Release date:2021-12-24 04:01 Export PDF Favorites Scan
        • Research progress on the effect of transcranial magnetic stimulation on learning, memory and plasticity of brain synaptic

          Transcranial magnetic stimulation (TMS) as a noninvasive neuromodulation technique can improve the impairment of learning and memory caused by diseases, and the regulation of learning and memory depends on synaptic plasticity. TMS can affect plasticity of brain synaptic. This paper reviews the effects of TMS on synaptic plasticity from two aspects of structural and functional plasticity, and further reveals the mechanism of TMS from synaptic vesicles, neurotransmitters, synaptic associated proteins, brain derived neurotrophic factor and related pathways. Finally, it is found that TMS could affect neuronal morphology, glutamate receptor and neurotransmitter, and regulate the expression of synaptic associated proteins through the expression of brain derived neurotrophic factor, thus affecting the learning and memory function. This paper reviews the effects of TMS on learning, memory and plasticity of brain synaptic, which provides a reference for the study of the mechanism of TMS.

          Release date:2021-10-22 02:07 Export PDF Favorites Scan
        • Effect of 40 Hz pulsed magnetic field on mitochondrial dynamics and heart rate variability in dementia mice

          Alzheimer’s disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group (P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved (P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.

          Release date:2025-08-19 11:47 Export PDF Favorites Scan
        • Advances in methods and applications of electroencephalogram microstate analysis

          Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.

          Release date:2023-02-24 06:14 Export PDF Favorites Scan
        • Research on the application of convolution neural network in the diagnosis of Alzheimer’s disease

          With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.

          Release date:2021-04-21 04:23 Export PDF Favorites Scan
        • Research progress on flexible wearable sensors for health monitoring

          With the intensification of global aging trends and the continuous rise in the incidence of chronic diseases, the demand for health monitoring and early intervention has become increasingly urgent. Owing to their non-invasive nature, portability, and comfort, flexible wearable sensors have emerged as a key technology driving the development of personalized healthcare. Starting from specific application scenarios in health monitoring, this article systematically reviews recent research advances in flexible sensors within the healthcare field. Firstly, it outlines the design fundamentals of flexible sensors. This is followed by a focused analysis of their specific applications in monitoring vital signs, biochemical markers, as well as motion and neural activities, along with an in-depth exploration of the clinical significance, technical challenges, and targeted solutions in different scenarios. Finally, the current technical bottlenecks and clinical challenges are summarized, and an outlook on the future development of health monitoring systems is provided. This review aims to provide a systematic reference for the deep integration of flexible electronics technology and medicine.

          Release date: Export PDF Favorites Scan
        • Research on motor imagery recognition based on feature fusion and transfer adaptive boosting

          This paper proposes a motor imagery recognition algorithm based on feature fusion and transfer adaptive boosting (TrAdaboost) to address the issue of low accuracy in motor imagery (MI) recognition across subjects, thereby increasing the reliability of MI-based brain-computer interfaces (BCI) for cross-individual use. Using the autoregressive model, power spectral density and discrete wavelet transform, time-frequency domain features of MI can be obtained, while the filter bank common spatial pattern is used to extract spatial domain features, and multi-scale dispersion entropy is employed to extract nonlinear features. The IV-2a dataset from the 4th International BCI Competition was used for the binary classification task, with the pattern recognition model constructed by combining the improved TrAdaboost integrated learning algorithm with support vector machine (SVM), k nearest neighbor (KNN), and mind evolutionary algorithm-based back propagation (MEA-BP) neural network. The results show that the SVM-based TrAdaboost integrated learning algorithm has the best performance when 30% of the target domain instance data is migrated, with an average classification accuracy of 86.17%, a Kappa value of 0.723 3, and an AUC value of 0.849 8. These results suggest that the algorithm can be used to recognize MI signals across individuals, providing a new way to improve the generalization capability of BCI recognition models.

          Release date: Export PDF Favorites Scan
        • Long term power frequency electromagnetic fields exposure influences the causal network connection pattern of local field potentials during working memory

          The possible influence of electromagnetic field (EMF) on the function of neural systems has been widely concerned. In this article, we intend to investigate the effects of long term power frequency EMF exposure on brain cognitive functions and it’s mechanism. The Sprague-Dawley (SD) rats were randomly divided into 3 groups: the rats in EMF Ⅰ group were placed in the 2 mT power frequency EMF for 24 days. The rats in EMF Ⅱ group were placed in the 2 mT power frequency EMF for 48 days. The rats in control group were not exposed to the EMF. Then, the 16 channel local field potentials (LFPs) were recorded from rats’ prefrontal cortex (PFC) in each group during the working memory (WM) tasks. The causal networks of LFPs were also established by applying the directed transfer function (DTF). Based on that, the differences of behavior and the LFPs network connection patterns between different groups were compared in order to investigate the influence of long term power frequency EMF exposure on working memory. The results showed the rats in the EMF Ⅱ group needed more training to reach the task correction criterion (over 80%). Moreover, the causal network connection strength and the global efficiency of the rats in EMF Ⅰ and EMF Ⅱ groups were significantly lower than the corresponding values of the control group. Meanwhile, significant differences of causal density values were found between EMF Ⅱ group and the other two groups. These results indicate that long term exposure to 2 mT power frequency EMF will reduce the connection strength and the information transfer efficiency of the LFPs causal network in the PFC, as well as the behavior performance of the rats. These results may explain the effect of EMF exposure on working memory from the view of neural network connectivity and provide a support for further studies on the mechanism of the effect of EMF on cognition.

          Release date:2019-02-18 02:31 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜