Cobalt or chromium alloys are the most common clinical materials of prosthesis and there have been some investigators at home and abroad have done related researches about the genotoxic effects of cobalt and chromium ions and nanoparticles. People have certain understanding about the mechanism of production of ions as well as their influence on cells. However, chromium or cobalt nanoparticles genotoxicity related research is still in its preliminary stage. In each stage, the mechanisms, from creating of the particles, through entering cells, until finally causing genotoxic, are still contained many problems to be solved. This article reviews the research progress in mechanisms of production and genotoxic effects of cobalt, chromium ions and nanoparticles.
Medical magnetic nanoparticles are nano-medical materials with superparamagnetism, which can be collected in the tumor tissue through blood circulation, and magnetic particle imaging technology can be used to visualize the concentration of magnetic nanoparticles in the living body to achieve the purpose of tumor imaging. Based on the nonlinear magnetization characteristics of magnetic particles and the frequency characteristics of their magnetization, a differential detection method for the third harmonic of magnetic particle detection signals is proposed. It was modeled and analyzed, to study the nonlinear magnetization response characteristics of magnetic particles under alternating field, and the spectral characteristics of magnetic particle signals. At the same time, the relationship between each harmonic and the amount of medical magnetic nanoparticle samples was studied. On this basis, a signal detection experimental system was built to analyze the spectral characteristics and power spectral density of the detected signal, and to study the relationship between the signal and the excitation frequency. The signal detection experiment was carried out by the above method. The experimental results showed that under the alternating excitation field, the medical magnetic nanoparticles would generate a spike signal higher than the background sensing signal, and the magnetic particle signal existed in the odd harmonics of the detected signal spectrum. And the spectral energy was concentrated at the third harmonic, that is, the third harmonic magnetic particle signal detection that meets the medical detection requirement could be realized. In addition, the relationship between each harmonic and the particle sample volume had a positive growth relationship, and the detected medical magnetic nanoparticle sample volume could be determined according to the relationship. At the same time, the selection of the excitation frequency was limited by the sensitivity of the system, and the detection peak of the third harmonic of the detection signal was reached at the excitation frequency of 1 kHz. It provides theoretical and technical support for the detection of medical magnetic nanoparticle imaging signals in magnetic particle imaging research.
Objective To assess the applied significance of carbon nanoparticles in central compartment lymph node dissection in treatment of cN0 papillary thyroid carcinoma. Methods Sixty-eight patients with cN0 papillary thyroid carcinoma who were treated in Tongji Hospital of Tongji Medical College from May. to Oct. in 2012 were randomly allocated to the control group (n=32) and the carbon nanoparticles trace group (tracer group, n=36), receiving non-carbon nanoparticles trace and carbon nanoparticles trace respectively. All patients were received total resection of thyroid plus the affected side and (or) contralateral side central compartment lymph node dissection. The lymph node-related indexes(including number of dissected lymph node at Ⅵarea and lymph node metastasis rate at Ⅵarea) and operative indexs (including operation time, blood loss, drainage time, complication, and hospital stay) were collected and compared between the 2 groups. Results There were 205 and 324 dissected lymph node at central compartment in control group and tracer group respectively. The results of postoperative pathology showed that the number of lymph node in central compartment of the tracer group was much more than those of control group (8.99±2.24 vs. 6.41±1.56, P<0.001). The metastasis rate of central compartment lymph node were 40.6% (13/32) in control group and 47.2% (17/36) in tracer group, but there was no significant difference between the 2 groups (P=0.762). But in medial area of laryngeal recurrent nerve, the metastasis rate in the tracer group (38.9%, 14/36) was much higher than those of control group (12.5%, 4/32), P=0.029. There were no significant differences in the operation time, blood loss, drainage time, hospital stay, and complication incidence such as bleeding, temporary hypocalcemia, and injury of superior laryngeal nerve between 2 groups (P>0.05). All the patients in 2 groups had followed-up for 6 months without death, recurrence, and metastasis.Conclusions The lymphatic tracer technique of carbon nanoparticles may improve the number of dissected lymph nodes in central region of cN0 papillary thyroid carcinoma, without increasing (or prolonging) operation time, intraoperative blood loss, and postoperative hospital stay, and can accurately represent the metastasis of lymph node, thus to make the staging of the tumor accurately and guide postoperative treatment.
Objective To evaluate the feasibility of sentinel lymph node (SLN) mapping after 99Tcm sulfur colloid (99Tcm-sc) and carbon nanoparticles injection in patients with colon cancer. Methods Forty patients with colon cancer underwent complete mesocolic excision between August 2015 and July 2016 at Qingdao Central Hospital were considered for prospective inclusion. Before resection, SLN mapping was performed with injection of 99Tcm-sc and carbon nanopar-ticles, then all dissected lymph nodes were detected by pathological examination. Results A total of 660 cases of lymph nodes were found in the 40 patients (average of 16.5 cases per patient). Of them, 88 nodes (average of 2.2 cases per patient) were identified as SLN in 36 of 40 patients, with a successful detection rate of 90.0% (36/40). The diagnostic accuracy, sensitivity, and false-negative rate were 87.5% (35/40), 96.2% (25/26), and 3.8% (1/26) respectively. Conclusion 99Tcm-sc and carbon nanoparticles suspension injection for mapping SLN is a feasiblely diagnostic method for predicting local lymph node metastasis in the patient with colon cancer.
Objective To observe the inhibitory characteristics of silver nanoparticles (AgNP) on bacterial biofilms and investigate their inhibitory effect on biofilm formation on three common orthopedic biomaterials. Methods The minimal inhibitory concentration (MIC) and minimal biofilm inhibitory concentration (MBIC) of AgNP were determined by microplate dilution assay. Biofilms of Staphylococcus aureus (ATCC 25923) were cultured on three orthopedic biomaterials (titanium alloy, titanium oxide, and stainless steel) and intervened with AgNP at concentrations of 32, 16, 8, 4, 2 and 0 μg/mL to determine the MBICs on the three materials. The effects of AgNP on biofilm formation were analyzed by scanning electron microscopy and measuring optical density. Results The MIC and MBIC of AgNP in the microplate assay were both 16 μg/mL. The MBICs of AgNP on biofilm formation in titanium oxide, titanium alloy, and stainless steel were 16 μg/mL, 32 μg/mL, and 32 μg/mL, respectively. Among the three materials, the lowest optical density was observed on titanium oxide, while the highest was on titanium alloy. Conclusions AgNP has strong antibacterial biofilm characteristics and can prevent the formation of Staphylococcus aureus biofilm in vitro. Biofilm formation is most pronounced on titanium alloy, least on titanium oxide, and intermediate on stainless steel.
Abstract: Surgery is an effective therapy for non-small cell lung cancer (NSCLC). The standard operation includes lobectomy and systematic dissection of lymph nodes. However, postoperative tumor recurrence is common even among incipient patients due to incomplete dissection of lymph nodes and micrometastasis of lymph nodes. Injecting a carbon nanoparticles suspension is a new technique aimed at preventing this recurrence. The carbon nanoparticles carry lymph node tracers that help surgeons locate lymph nodes in order to clean them thoroughly. The tracers also target the lymph nodes for chemotherapy, thus killing residual tumor cells intraoperatively to avoid postoperative cancer recurrence. Carbon nanoparticles suspension injection is already widely and successfully used in surgery for gastrointestinal and mammary gland tumors, and is being tested for effectiveness in NSCLC patients. Some studies have indicated that carbon nanoparticles suspension injection is effective in NSCLC patients and improves their prognoses. We reviewed the features, application methods, and clinical applications of studies of carbon nanoparticles suspension injection for NSCLC.
Cholangiocarcinoma is a highly malignant tumor. It is not sensitive to radiotherapy and chemotherapy and has a poor prognosis. At present, there is no effective treatment. As a new method for treating cancer, magnetic fluid hyperthermia has been clinically applied to a variety of cancers in recent years. This article introduces it to the cholangiocarcinoma model and systematically studies the effect of magnetic fluid hyperthermia on cholangiocarcinoma. Starting from the theory of magnetic fluid heating, the electromagnetic and heat transfer models were constructed in the finite element simulation software COMSOL using the Pennes biological heat transfer equation. The Helmholtz coil was used as an alternating magnetic field generating device. The relationship between the magnetic fluid-related properties and the heating power was analyzed according to Rosensweig’s theory. After the multiphysics coupling simulation was performed, the electromagnetic field and thermal field distribution in the hyperthermia region were obtained. The results showed that the magnetic field distribution in the treatment area was uniform, and the thermal field distribution met the requirements of hyperthermia. After the magnetic fluid injection, the cholangiocarcinoma tissue warmed up rapidly, and the temperature of tumor tissues could reach above 42 °C, but the surrounding healthy tissues did not heat up significantly. At the same time, it was verified that the large blood vessels around the bile duct, the overflow of the magnetic fluid, and the eddy current heat had little effect on thermotherapy. The results of this article can provide a reference for the clinical application of magnetic fluid hyperthermia for cholangiocarcinoma.
This paper provides a brief overview of the current research activities which focused on the bio-application of gold magnetic nanocomposite particles. By combining the magnetic characteristics of the iron oxide core with the unique features of nano-gold particles such as targeting by surface modification and optical properties, such composite nanoparticles have a wide range of applications in cancer hyperthermia, CT and MRI imaging, bio-separation, biosensors, gene diagnosis, drug targeting and many other biomedical fields.
Objective To determine the best matching concentration of carbon nanoparticles suspension injection adsorb epirubicin by measuring the combination ratio of carbon nanoparticles suspension injection combined with epirubicin under different matching conditions. And then, to prove the adsorbability of carbon nanoparticles suspension injection adsorb epirubicin in vitro. Methods Firstly, epirubicin-carbon suspension of different concentrations will be prepared. The second, high performance liquid chromatography mass spectrometry(LC-MS) was used to assay the concentration of free epirubicin, and calculate the content of epirubicin that was combinated with carbon nanoparticles suspension injection. The difference of the ratio of carbon nanoparticles suspension injection combined with epirubicin under different matching conditions will be compared in the end. Results The combination ratio of carbon nanoparticles suspension injection combined with epirubicin solution of 5, 10, and 15 mg/ml were 85.6%, 85.7%, and 31.8%, respectively. Conclusions The adsorbability of carbon nanoparticles suspension injection adsorb epirubicin is favourable in vitro. Best matching concentration of carbon nanoparticles suspension injection adsorb epirubicin may be epirubicin solution of 5-10 mg/ml.
Objective To investigate an inhibitive effect of the chitosan nanoparticles with the proliferation cell nuclear antigen (PCNA)-antisense oligo deoxy nucleotides (ASODN) on the intimal cell proliferation after the vein grafting.Methods Fiftyfour male SD rats, weighing 450-600g, were randomly divided in the experimental group and the control group of 27 rats each. In the experimental group, the chitosan nanoparticles with PCNAASODN were infused into the anastomosis segment of the right jugular artery and vein; then, the anastomosis segment was transplanted to the jugular artery on the same side. The rats in the control group were infused with normal saline by the same procedures. There were 24 rats in each group which used to experiment. The hemodynamic data were obtained from the Doppler ultrasound examinations at 1, 2, 3 and 4 weeks. The specimens were taken. Immunohistochemistry, Westernblot, and bloodvesselwall histopathology were performed at the different week points. Results There was no significant difference in the thrombogenesis rate between the experimental group and the control group (3/27 vs. 3/27,P>0.05). During the 4 week observation, PCNA Westernblot showed that the PCNA level was lower in the grafted vein and the anastomosis segment in the experimental group than in the control group. The indexes of the PCNA postive proliferating cells in the intimal area (0.13%±0.11%,0.79%±0.28%,0.45%±0.29%, 0.43%±0.25%) and the medial area (1.90%± 0.84%,2.11%±0.98%,2.48%±0.77%,2.17%±0.36%) were significantlydecreased at 1,2,3 and 4 weeks in the experimental group when compared with those in the control group(P<0.05). The lumen areas in the grafted vein (88.71±16.96,95.98±21.44,88.48±32.81,97.86±34.11 μm 2) and the anastomosis segment (41.49±3.34,45.15±11.65,46.27±8.90,51.62±8.85 μm 2) were significantly greater in the experimental group than in the control group (P<0.05). The ratios of the initmal area to the medial area in the grafted vein (22.73%±3.11%,32.40%±4.55%,45.14%±3.19%,45.70%±5.01%) and the anastomsis segment (41.49%±3.34%,45.15%±11.65%,46.27%±890%,51.62%±8.85%) were significantly smaller in the experimental group than in the control group(P<0.05). The maximum velocities (Vmax) of the blood flow inthe grafted vein and the anastomsis segment were almost the same in the two groups at 1 week, but had different changes at the next 3 weekpoints. In the control group, the Vmax of the blood flow gradually increased and at 3 weeks it reached the peak point; however, at 4 weeks it decreased. In the experimental group,the Vmax of the blood flow gradually decreased, and at 3 weeks it decreased to the lowest point; however, at 4 weeks it increased. So, at 4 weeks the Vmax of the blood flow in the grafted vein and the anastomsis segment was almost the samein the two groups. There was no significant difference in the Vmax of the bloodflow between the two groups (P>0.05), but in the same group there wasa significant difference at the different time points. Conclusion The chitosan nanoparticles with PCNAASODN can effectively inhibit the intimal cell proliferation after the grafting of the blood vessel, so that the neointimal thickening can be prevented.