• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "ischemia-reperfusion" 31 results
        • The mechanism of N-acetylserotonin regulating microglial polarization via NOD1/Rip2 pathway in rats after retinal ischemia reperfusion

          Objective To investigate the effect of N-acetylserotonin (NAS) on the retinal microglia polarization in retinal ischemia-reperfusion injury (RIRI) rats and explore its mechanism via nucleotide-bound oligomeric domain 1 (NOD1)/receptor interacting protein 2 (Rip2) pathway. MethodsHealthy male Sprague Dawley rats were randomly divided into Sham (n=21), RIRI (n=21) and NAS (injected intraperitoneally 30 min before and after modeling with NAS, 10 mg/kg, n=18) groups, using random number table. And the right eye was used experimental eye. The RIRI model of rats in RIRI group and NAS group was established by anterior chamber high intraocular pressure method. Rats in NAS group were intraperitoneally injected with 10 mg/kg NAS before and 30 min after modeling, respectively. The retinal morphology and the number of retinal ganglion cell (RGC) in each group were detected by hematoxylin-eosin staining and immunohistochemical staining. The effect of NAS on polarization of retinal microglia was detected by immunofluorescence staining. Transcriptome sequencing technology was used to screen out the differentially expressed genes between Sham and RIRI groups. Western blot and real-time quantitative polymerase chain reaction (RT-PCR) were used to examine the differentially expressed genes. Immunohistochemical staining, Western blot and RT-PCR were used to investigate the effect of NAS on the expression of NOD1 and Rip2 protein and mRNA in retinal tissue and microglia of rats. General linear regression analysis was performed to determine the correlation between the number difference of NOD1+ cells and the number difference of M1 and M2 microglia in retinal tissues of rats in NAS group and RIRI group. ResultsA large number of RGC were observed in the retina of rats in Sham group. 24 h after modeling, compared with Sham group, the inner retinal thickness of rats in RIRI group was significantly increased and the number of RGC was significantly decreased. The thickness of inner retina in NAS group was significantly thinner and the number of RGC was significantly increased. Compared with Sham group, the number of retinal microglia of M1 and M2 in RIRI group was significantly increased. Compared with RIRI group, the number of M1 microglia decreased significantly and the number of M2 microglia increased significantly in NAS group. There was statistical significance in the number of M1 and M2 microglia in the retina of the three groups (P<0.05). Transcriptome sequencing results showed that retinal NOD1 and Rip2 were important differential genes 24 h after modeling. The mRNA and protein relative expressions of NOD1 and Rip2 in retina of RIRI group were significantly higher than those of Sham group, with statistical significance (P<0.05). The number of NOD1+ and Rip2+ cells and the relative expression of mRNA and protein in retinal microglia in RIRI group were significantly higher than those in Sham group, and NAS group was also significantly higher than that in Sham group, but lower than that in RIRI group, with statistical significance (P<0.05). The number of Iba-1+/NOD1+ and Iba-1+/Rip2+ cells in retinal microglia in RIRI group was significantly increased compared with that in Sham group, and the number of Iba-1+/Rip2+ cells in NAS group was significantly decreased compared with that in RIRI group, but still significantly higher than that in Sham group, with statistical significance (P<0.05). Correlation analysis results showed that the difference of retinal NOD1+ and Rip2+ cells in NAS group and RIRI group was positively correlated with that of M1 microglia (r=0.851, 0.895), and negatively correlated with that of M2 microglia (r=?0.797, ?0.819). The differences were statistically significant (P<0.05). ConclusionNAS can regulate the microglial polarization from M1 to M2 phenotype, the mechanism is correlated with the NOD1/Rip2 pathway.

          Release date:2024-04-11 09:03 Export PDF Favorites Scan
        • Effects of S100A4 overexpression on retinal capillary cells in a retinal ischemia-reperfusion model in rats

          ObjectiveTo observe the effects of overexpression of S100A4 protein on retinal capillary cells and retinal ganglion cells (RGC) after retinal ischemia-reperfusion injury (RIRI). MethodsOne hundred healthy adult male C57BL/6 mice were randomly divided into normal control group (group C), RIRI group, adeno-associated virus (AAV2)-S100A4 green fluorescent protein (GFP) intravitreal injection group (group S), RIRI+AAV2-GFP intravitreal injection group (group GIR), and RIRI+AAV2-S100A4-GFP intravitreal injection group (group SIR), with 20 mice in each group. The RIRI model was established using the high intraocular pressure anterior chamber method in the RIRI, GIR and SIR groups of mice. Eyes were enucleated 3 days after modelling by over anaesthesia. The number of retinal capillary endothelial cells and pericytes in the retinal capillaries of mice in each group was observed by retinal trypsinised sections and hematoxylin-eosin and periodic acid-Schiff staining; immunofluorescence staining was used to observe endothelial cell, pericyte coverage and RGC survival; The relative expression of Toll-like receptor 4 (TLR4), p38 MAPK and nuclear factor erythroid 2-related factor 2 (NRF2) in retinal tissues was measured by Western blot. One-way analysis of variance was used to compare data between groups. ResultsThree days after modeling, the endothelial cell to pericyte ratio in group C was compared with group S and SIR, and the difference was not statistically significant (F=106.30, P>0.05); the SIR group was compared with group RIRI and GIR, and the difference was statistically significant (F=106.30, P<0.000 1). Comparison of endothelial cell coverage in each group, the difference was not statistically significant (F=3.44, P>0.05); compared with the pericyte coverage in group C, the RIRI group and the GIR group were significantly lower, and the difference was statistically significant (F=62.69, P<0.001). Compared with the RGC survival rate in group C, it was significantly lower in RIRI and GIR groups, and the difference was statistically significant (F=171.60, P<0.000 1); compared with RIRI and GIR groups, the RGC survival rate in SIR group was significantly higher, and the difference was statistically significant (F=171.60, P<0.000 1). The relative expression levels of TLR4, p38 and NRF2 proteins were statistically significant among all groups (F=42.65, 20.78, 11.55; P<0.05). ConclusionsPericytes are more sensitive to ischemia than endothelial cells after retinal RIRI in mice, and early vascular cell loss is dominated by pericytes rather than endothelial cells. The overexpression of S100A4 protein protects against loss of pericytes and RGC after RIRI by inhibiting the TLR4/p38/NRF2 signaling pathway.

          Release date:2024-04-11 09:03 Export PDF Favorites Scan
        • Protective Effect of Peroxisome Proliferator-Activated Receptor γ Activator 15-Deoxyprostaglandin J2 in Rat HepaticIschemia-Reperfusion Injury and Its Mechanism

          【 Abstract 】 Objective To investigate the protective effect of peroxisome proliferator-activated receptor γ (PPAR γ ) activator 15-deoxyprostaglandin J2 (15d-PGJ2) in rat hepatic ischemia-reperfusion injury and its mechanism. Methods The models of 70% warm ischemia-reperfusion injury were established in SD rats, rats were randomly divided into 4 groups: sham operation group, ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group. After reperfusion, serum AST and ALT levels were determined; the liver tissues were removed for measurement of activity of NF-κB and myeloperoxidase (MPO), TNF-α content and expression of ICAM-1. Results Compared with sham operation group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group were greatly improved (P < 0.05). Compared with ischemia-reperfusion group, the serum levels of ALT and AST and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in 15d-PGJ2 group were significantly decreased (P < 0.05). Compared with 15d-PGJ2 group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and the expression of ICAM-1 in 15d-PGJ2+GW9662 group were obviously increased (P < 0.05). Conclusion PPAR γ activator 15d-PGJ2 could protect against ischemia-reperfusion injury in rats, with its possible mechanism of inhibiting NF-κB activation and down-regulating TNF-α content and ICAM-1 expression in a PPARγ dependent fashion.

          Release date:2016-09-08 11:45 Export PDF Favorites Scan
        • Protective Effect of Shenfu Injection on Liver Injury Following Hind Limb Ischemia-Reperfusion

          ObjectiveTo investigate the protective effect of Shenfu injection on liver injury in rats with hind limb ischemia-reperfusion and its mechanism. MethodsSixty-four male rats were randomly divided into sham operation group, ischemia-reperfusion group, Shenfu group〔Shenfu injection 7.5 mL/kg injection of peritoneal(ip), given 10 min before ischemia-reperfusion〕, Shenfu+Znpp group(Shenfu injection 7.5 mL/kg+Znpp 5 mg/kg ip, given 10 min before ischemia-reperfusion), 16 rats in each group. The rat model of hind limb ischemia-reperfusion injury was reproduced by occluding the hind limb artery of the rats for 3 h and subsequent reperfusing for 4 h. The liver tissues were gathered for malondialdehyde(MDA)and superoxide dismutase(SOD)determination. The expression of hemeoxygenase 1(HO-1)protein in the liver tissues was detected by immunohistochemistry. The pathological changes of liver were observed under the light microscope. The changes of serum glutamate-pyruvate transaminase(GPT)and glutamine oxaloacetic transaminase(GOT)were observed respectively. Results①Compared with the sham operation group, the contents of MDA, GPT, GOT, and the expression of HO-1 protein were markedly increased in the ischemia-reperfusion group, Shenfu group, and Shenfu+Znpp group(P < 0.05), the activities of SOD were markedly decreased in the ischemia-reperfusion group and Shenfu+Znpp group(P < 0.05).②Compared with the ischemia-reperfusion group, the contents of MDA, serum GPT, GOT, and the expression of HO-1 protein were markedly decreased, the activity of SOD was markedly increased in the Shenfu group(P < 0.05).③Compared with the Shenfu group, the contents of MDA, GPT, GOT were markedly increased, the activity of SOD was markedly decreased in the Shenfu+Znpp group(P < 0.05). Unde ther light microscope, the pathological changes induced by ischemia-reperfusion were significantly attenuated by the Shenfu injection in the Shenfu group and were reversed by the Znpp in the Shenfu+Znpp group. ConclusionShenfu injection inhibits liver tissue injury during hind limb ischemia-reperfusion, this protective effect might be partly through induction of HO-1.

          Release date: Export PDF Favorites Scan
        • Research progress of the function of liver non-parenchymal cells in hepatic ischemia-reperfusion injury

          ObjectiveTo investigate relationship between liver non-parenchymal cells and hepatic ischemia-reperfusion injury (HIRI).MethodThe relevant literatures on researches of the relationship between HIRI and liver non-parenchymal cells were analyzed and reviewed.ResultsDuring HIRI, hepatocytes could be severely damaged by aseptic inflammatory reaction and apoptosis. The liver non-parenchymal cells included Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells, and dendritic cells, which could release a variety of cytokines and inflammatory mediators to promote the damage, and some liver non-parenchymal cells also had effect on reducing HIRI, for example: Kupffer cells could express heme oxygenase-1 to reduce HIRI, and hepatic stellate cells may participate in the repair process after HIRI. The role of liver non-parenchymal cells in HIRI was complex, but it also had potential therapeutic value.ConclusionLiver non-parenchymal cells can affect HIRI through a variety of mechanisms, which provide new goals and strategies for clinical reduction of HIRI.

          Release date:2020-07-01 01:12 Export PDF Favorites Scan
        • Role and mechanism of mesenchymal stem cell-derived exosomes on renal ischemia-reperfusion injury

          Acute kidney injury (AKI) is characterized by a sudden and rapid decline of renal function and associated with high morbidity and mortality. AKI can be caused by various factors, and ischemia-reperfusion injury (IRI) is one of the most common causes of AKI. An increasing number of studies found out that exosomes of mesenchymal stem cells (MSCs) could alleviate IRI-AKI by the adjustment of the immune response, the suppression of oxidative stress, the reduction of cell apoptosis, and the promotion of tissue regeneration. This article summarizes the effect and mechanism of MSC-derived exosomes in the treatment of renal ischemia-reperfusion injury, in order to provide useful information for the researches on this field.

          Release date:2022-08-24 01:25 Export PDF Favorites Scan
        • Research progress of NETs in hepatic ischemia-reperfusion injury

          ObjectiveTo summarize the mechanism of neutrophil extracellular traps (NETs) in hepatic ischemia-reperfusion injury (HIRI) and the research progress in targeting NETs to reduce HIRI, providing valuable reference for reducing HIRI. MethodThe related literatures at home and abroad about the role of NETs in the pathogenesis of HIRI and target NETs to alleviate HIRI were retrieved and reviewed. ResultsHIRI usually appeared in the process of liver surgery and was a common clinical problem, which occured in situations such as liver surgery, organ transplantation, liver ischemia and so on. This kind of injury would lead to tissue necrosis, inflammatory response and oxidative stress, which was a major cause of hepatic dysfunction and multiple organ failure after hepatic surgery, greatly increases the complications and mortality after hepatic surgery. NETs played a crucial role in the aseptic inflammatory response induced by hepatic ischemia/reperfusion. During hepatic ischemia-reperfusion, neutrophils promoted inflammatory cascade reactions and cytokine storms by forming NETs, exacerbating damage caused by hepatic ischemia-reperfusion. At present, some experimental and clinical studies had shown that inhibiting the formation of NETs or eliminating the formed NETs could alleviate the hepatic ischemia-reperfusion injury and improve the prognosis. ConclusionsTargeting NETs may become a new method for treating hepatic ischemia-reperfusion injury. In the future, it is foreseeable that more experiments and clinical trials will be conducted on targeted NETs for the treatment of hepatic ischemia-reperfusion injury. And gradually establish more comprehensive and effective treatment strategies, thereby providing new ways to improve the prognosis of hepatic surgery patients in clinical practice.

          Release date:2024-04-25 01:50 Export PDF Favorites Scan
        • Effect and mechanism of recombinant human brain natriuretic peptide in alleviating myocardial ischemia-reperfusion injury by regulating mitogen activated protein kinase pathway

          Objective To study the effect and mechanism of recombinant human brain natriuretic peptide (rh-BNP) in alleviating myocardial ischemia-reperfusion (I/R) injury by regulating mitogen activated protein kinase (MAPK) pathway. Methods A total of 128 adult male Sprague-Dawley (SD) rats with specific pathogen free were selected. The SD rats were divided into groups according to random number table, including, sham operation (Sham) group, I/R group, I/R+rh-BNP group, negative control adenovirus (Ad-NC)+Sham group, Ad-NC+I/R group, Ad-NC+I/R+rh-BNP group, p38 mitogen-activated protein kinase adenovirus (Ad-p38MAPK)+I/R group and Ad-p38MAPK+I/R+rh-BNP group, with 16 SD rats in each group. Myocardial I/R injury model was established by ligation of left anterior descending coronary artery. Before modeling, rh-BNP was injected intraperitoneally or adenovirus was injected into myocardium; 180 minutes after reperfusion, the contents of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB) in serum, myocardial infarction size, the contents of reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α) and the expression of phosphorylated p38MAPK (p-p38MAPK), phosphorylated JNK (p-JNK) and phosphorylated extracellular regulated protein kinases 1/2 (p-ERK1/2) were detected. Results The contents of LDH, CK-MB, myocardial infarction size, the contents of TNF-α, ROS and the expression of p-p38MAPK and p-JNK in I/R group were higher than those in Sham group, p-ERK1/2 expression level was lower than that in Sham group (P<0.05). The contents of LDH, CK-MB, myocardial infarction size, the contents of TNF-α, ROS and the expression of p-p38MAPK in I/R+rh-BNP group were lower than those in I/R group (P<0.05), the expression of p-JNK and p-ERK1/2 had no significant difference compared with I/R group (P>0.05). The contents of LDH, CK-MB, myocardial infarction size, the contents of TNF-α, ROS and the expression of p-p38MAPK in Ad-p38mapk+I/R+rh-BNP group were higher than those in Ad-NC+I/R-rh-BNP group (P<0.05). Conclusion rh-BNP can alleviate myocardial I/R injury, which is related to inhibiting p38MAPK pathway, reducing inflammation response and oxidative stress response.

          Release date:2022-11-24 04:15 Export PDF Favorites Scan
        • Postischemic treatment of namefene hydrochloride alleviates lung ischemia reperfusion injury by inhibiting TLR2/MyD88/NF- κB p65 inflammation pathway in rats

          Objective To study the mechanism of alleviating lung ischemia-reperfusion injury by postischemic treatment with namefene hydrochloride, and explore the optimal timing of drug treatment throughout the disease course. Methods A total of 60 rats were randomly divided into six groups with 10 rats in each group: a sham group, a model group, a nalmefene A (NA) group, a nalmefene B (NB) group, a nalmefene C (NC) group and a nalmefene D (ND) group. The sham group without drug treatment was not treated with ischemia-reperfusion. The lung ischemia-reperfusion model was established by occlusion of the left pulmonary hilum in the model group without drug treatment. After ischemic treatment, the NA, NB, NC and ND groups were respectively injected with nalmefene (15 μg/kg) by the tail vein at 5 min before, 10 min, 30 min and 60 min after pulmonary circulation reperfusion. At the 3rd hour after reperfusion, all rats were sacrificed and the specimens from the upper lobe of the left lung tissue were preserved to observe pulmonary lesions, detect wet/dry weight ratio and the activity of myeloperoxidase (MPO), the expressions of tumor necrosis factor-α (TNF-α), Toll-like receptor 2 (TLR2) mRNA and MyD88 mRNA as well as the expressions of TLR2, MyD88, NF-κB p65 and p-NF-κB p65 in lung tissue. Results There were different degrees of alveolar septal destruction, obvious pulmonary interstitial edema, the infiltration of inflammatory cell, the exudationred of blood cell in the mesenchyme, and the collapse of partial alveolar in the model group and the NA, NB, NC, ND groups. In terms of wet/dry weight ratio, the score of lung tissue injury, the activity of MPO, the expressions of TNF-α, TLR2 mRNA and MyD88 mRNA as well as the expressions of TLR2, MyD88, NF-κB p65 and p-NF-κB p65 in lung tissue, the model group were significantly higher than the sham group (P<0.01); there was no significant difference between the ND group and the model group (P>0.05). The corresponding test values of the nalmefene groups with post-ischemic treatment showed the characteristics of ND group> NC group> NB group> NA group (P<0.01). Conclusion The effect of nammefene on alleviating lung ischemia-reperfusion injury is closely related to the inhibition of TLR2, MyD88, NF-κB p65 and phosphorylation of NF-κB p65 with a characteristic of time-dependent manner.

          Release date:2023-10-10 01:39 Export PDF Favorites Scan
        • Protection of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate receptors

          ObjectiveTo analyze the protective mechanism of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate (NMDA) receptor.MethodsA total of 42 SD rats were randomly assigned to 4 groups: a non-blocking group (n=6), a saline group (n=12), a NMDA receptor blocker K-1024 (25 mg/kg) group (n=12) and a voltage-gated Ca2+ channel blocker nimodipine (0.5 mg/kg) group (n=12). The medications were injected intraperitoneally 30 min before ischemia. The neural function was evaluated. The neuronal histologic change of spinal cord lumbar region, the release of neurotransmitter amino acids and expression of spinal cord neuronal nitric oxide synthase (nNOS) were compared.ResultsAt 8 h after reperfusion, the behavioral score of the K-1024 group was 2.00±0.00 points, which was statistically different from those of the saline group (5.83±0.41 points) and the nimodipine group (5.00±1.00 points, P<0.05). Compared with the saline group and nimodipine group, K-1024 group had more normal motor neurons (P<0.05). There was no significant difference in glutamic acid concentration in each group at 10 min after ischemia (P=0.731). The nNOS protein expression in the K-1024 group was significantly down-regulated compared with the saline group (P<0.01). After 8 h of reperfusion, the expression of nNOS protein in the K-1024 group was significantly up-regulated compared with the saline group (P<0.05).ConclusionK-1024 plays a protective role in spinal cord ischemia by inhibiting NMDA receptor and down-regulating nNOS protein expression; during the reperfusion, K-1024 has a satisfactory protective effect on spinal cord function, structure and biological activity of nerve cells.

          Release date:2020-12-31 03:27 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜