Objective To observe the influence of resveratrol on superoxide dismutase (SOD), malondialdehyde (MDA), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) of intestinal mucosal ischemia-reperfusion injury protection in rats with severe acute pancreatitis (SAP). Methods Fifty-four rats were divided into three groups randomly: sham operation group (SO group), SAP model group (SAP group) and resveratrol-treated group (Res group). SAP model was made by injecting sodium taurocholate 50 mg/kg to pancreatic bile duct and resveratrol was given intravenously at 5 min after inducing SAP model. The rats were sacrificed at 3 h, 6 h and 12 h after inducing SAP model respectively by equal number. The levels of MDA, SOD, ICAM-1 and VCAM-1 and histological changes of small intestine were measured. Results The level of MDA in small intestine tissue in SAP group was significantly higher than that in SO group (P<0.05), while the activity of SOD was significantly lower in the relevant tissues (P<0.05). The expressions of ICAM-1 and VCAM-1 in SAP group were higher than those of SO group (P<0.05). The activity of SOD in small intestine tissue in Res group was significantly higher than that in SAP group (P<0.05); while the level of MDA was significantly lower in the relevant tissues (P<0.05). The expressions of ICAM-1 and VCAM-1 in Res group were lower than those of SAP group (P<0.05). Conclusions Oxygen free radicals are concerned with the process of pathological changes in intestinal mucosal ischemia-reperfusion in rats with SAP. Resveratrol might increase SOD activity and decrease MDA level to attenuate lipid peroxidation in small intestine of SAP, and reduce the expressions of ICAM-1 and VCAM-1 in intestine, thus diminish the damage of the intestine in SAP. And it acts as a protective effect to small intestinal ischemia-reperfusion injury.
ObjectiveTo summarize the research advances of pyroptosis in hepatic ischamia-reperfusion injury (IRI).MethodThe literatures about the studies of mechanism of pyroptosis in hepatic IRI were retrieved and analyzed.ResultsPyroptosis, also known as inflammatory necrocytosis, was proven to play an important role in the hepatic IRI. When hepatic ischemia-reperfusion occurred, the classical pathway of pyroptosis dependenting on caspase-1 and the non-classical pathway of pyroptosis dependenting on caspase-11 were initiated by specific stimulants, and leaded to the activation of gasdermin D, releases of proinflammatory factors such as interleukin-1β, interleukin-18, etc., and the recruitment and activation of neutrophils. Consequently, pyroptosis caused more severe hepatic inflammation and aggravated existing cell injury and dysfunction of liver during hepatic IRI.ConclusionsPyroptosis plays an important role in liver IRI. Further researches about mechanism of pyroptosis will be beneficial to the prevention and treatment of the pyroptosis of related diseases.
ObjectiveTo explore performances of functional magnetic resonance imaging (MRI) in evaluation of hepatic warm ischemia-reperfusion injury.MethodThe relative references about the principle of functional MRI and its application in the assessment of hepatic warm ischemia-reperfusion injury were reviewed and summarized.ResultsThe main functional MRI techniques for the assessment of hepatic warm ischemia-reperfusion injury included the diffusion weighted imaging (DWI), intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), blood oxygen level dependent (BOLD), dynamic contrast enhancement MRI (DCE-MRI), and T2 mapping, etc.. These techniques mainly used in the animal model with hepatic warm ischemia-reperfusion injury currently.ConclusionsFrom current results of researches of animal models, functional MRI is a non-invasive tool to accurately and quantitatively evaluate microscopic information changes of liver tissue in vivo. It can provide a useful information on further understanding of mechanism and prognosis of hepatic warm ischemia-reperfusion injury. With development of donation after cardiac death, functional MRI will play a more important role in evaluation of hepatic warm ischemia-reperfusion injury.
ObjectiveTo analyze the protective mechanism of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate (NMDA) receptor.MethodsA total of 42 SD rats were randomly assigned to 4 groups: a non-blocking group (n=6), a saline group (n=12), a NMDA receptor blocker K-1024 (25 mg/kg) group (n=12) and a voltage-gated Ca2+ channel blocker nimodipine (0.5 mg/kg) group (n=12). The medications were injected intraperitoneally 30 min before ischemia. The neural function was evaluated. The neuronal histologic change of spinal cord lumbar region, the release of neurotransmitter amino acids and expression of spinal cord neuronal nitric oxide synthase (nNOS) were compared.ResultsAt 8 h after reperfusion, the behavioral score of the K-1024 group was 2.00±0.00 points, which was statistically different from those of the saline group (5.83±0.41 points) and the nimodipine group (5.00±1.00 points, P<0.05). Compared with the saline group and nimodipine group, K-1024 group had more normal motor neurons (P<0.05). There was no significant difference in glutamic acid concentration in each group at 10 min after ischemia (P=0.731). The nNOS protein expression in the K-1024 group was significantly down-regulated compared with the saline group (P<0.01). After 8 h of reperfusion, the expression of nNOS protein in the K-1024 group was significantly up-regulated compared with the saline group (P<0.05).ConclusionK-1024 plays a protective role in spinal cord ischemia by inhibiting NMDA receptor and down-regulating nNOS protein expression; during the reperfusion, K-1024 has a satisfactory protective effect on spinal cord function, structure and biological activity of nerve cells.
【 Abstract 】 Objective To investigate the protective effect of peroxisome proliferator-activated receptor γ (PPAR γ ) activator 15-deoxyprostaglandin J2 (15d-PGJ2) in rat hepatic ischemia-reperfusion injury and its mechanism. Methods The models of 70% warm ischemia-reperfusion injury were established in SD rats, rats were randomly divided into 4 groups: sham operation group, ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group. After reperfusion, serum AST and ALT levels were determined; the liver tissues were removed for measurement of activity of NF-κB and myeloperoxidase (MPO), TNF-α content and expression of ICAM-1. Results Compared with sham operation group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group were greatly improved (P < 0.05). Compared with ischemia-reperfusion group, the serum levels of ALT and AST and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in 15d-PGJ2 group were significantly decreased (P < 0.05). Compared with 15d-PGJ2 group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and the expression of ICAM-1 in 15d-PGJ2+GW9662 group were obviously increased (P < 0.05). Conclusion PPAR γ activator 15d-PGJ2 could protect against ischemia-reperfusion injury in rats, with its possible mechanism of inhibiting NF-κB activation and down-regulating TNF-α content and ICAM-1 expression in a PPARγ dependent fashion.
Objective To investigate the protective effect of the exosome on the organ damage induced by ische-mia-reperfusion (I/R) so as to provide a new way for the treatment of I/R damage. Methods The literature related to the treatment of I/R damage was reviewed and analyzed. Results The exosome volume is small and it is present in blood, cerebrospinal fluid, and urine, which has the function to cross the blood-brain barrier, and protect the heart, brain and other organs after I/R damage. Conclusion Exosome is a new material for the treatment of I/R organ injury, and it is important to understand the protective effect and possible mechanism.
Objective To study the mechanism of alleviating lung ischemia-reperfusion injury by postischemic treatment with namefene hydrochloride, and explore the optimal timing of drug treatment throughout the disease course. Methods A total of 60 rats were randomly divided into six groups with 10 rats in each group: a sham group, a model group, a nalmefene A (NA) group, a nalmefene B (NB) group, a nalmefene C (NC) group and a nalmefene D (ND) group. The sham group without drug treatment was not treated with ischemia-reperfusion. The lung ischemia-reperfusion model was established by occlusion of the left pulmonary hilum in the model group without drug treatment. After ischemic treatment, the NA, NB, NC and ND groups were respectively injected with nalmefene (15 μg/kg) by the tail vein at 5 min before, 10 min, 30 min and 60 min after pulmonary circulation reperfusion. At the 3rd hour after reperfusion, all rats were sacrificed and the specimens from the upper lobe of the left lung tissue were preserved to observe pulmonary lesions, detect wet/dry weight ratio and the activity of myeloperoxidase (MPO), the expressions of tumor necrosis factor-α (TNF-α), Toll-like receptor 2 (TLR2) mRNA and MyD88 mRNA as well as the expressions of TLR2, MyD88, NF-κB p65 and p-NF-κB p65 in lung tissue. Results There were different degrees of alveolar septal destruction, obvious pulmonary interstitial edema, the infiltration of inflammatory cell, the exudationred of blood cell in the mesenchyme, and the collapse of partial alveolar in the model group and the NA, NB, NC, ND groups. In terms of wet/dry weight ratio, the score of lung tissue injury, the activity of MPO, the expressions of TNF-α, TLR2 mRNA and MyD88 mRNA as well as the expressions of TLR2, MyD88, NF-κB p65 and p-NF-κB p65 in lung tissue, the model group were significantly higher than the sham group (P<0.01); there was no significant difference between the ND group and the model group (P>0.05). The corresponding test values of the nalmefene groups with post-ischemic treatment showed the characteristics of ND group> NC group> NB group> NA group (P<0.01). Conclusion The effect of nammefene on alleviating lung ischemia-reperfusion injury is closely related to the inhibition of TLR2, MyD88, NF-κB p65 and phosphorylation of NF-κB p65 with a characteristic of time-dependent manner.
Objective To identify the N6-methyladenosine (m6A)-related characteristic genes analyzed by gene clustering and immune cell infiltration in myocardial ischemia-reperfusion injury (MI/RI) after cardiopulmonary bypass through machine learning. Methods The differential genes associated with m6A methylation were screened by the dataset GSE132176 in GEO, the samples of the dataset were clustered based on the differential gene expression profile, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differential genes of the m6A cluster after clustering were performed to determine the gene function of the m6A cluster. R software was used to determine the better models in machine learning of support vector machine (SVM) model and random forest (RF) model, which were used to screen m6A-related characteristic genes in MI/RI, and construct characteristic gene nomogram to predict the incidence of disease. R software was used to analyze the correlation between characteristic genes and immune cells, and the online website was used to build a characteristic gene regulatory network. Results In this dataset, a total of 5 m6A-related differential genes were screened, and the gene expression profiles were divided into two clusters for cluster analysis. The enrichment analysis of m6A clusters showed that these genes were mainly involved in regulating monocytes differentiation, response to lipopolysaccharides, response to bacteria-derived molecules, cellular response to decreased oxygen levels, DNA transcription factor binding, DNA-binding transcription activator activity, RNA polymerase Ⅱ specificity, NOD-like receptor signaling pathway, fluid shear stress and atherosclerosis, tumor necrosis factor signaling pathway, interleukin-17 signaling pathway. The RF model was determined by R software as the better model, which determined that METTL3, YTHDF1, RBM15B and METTL14 were characteristic genes of MI/RI, and mast cells, type 1 helper lymphocytes (Th1), type 17 helper lymphocytes (Th17), and macrophages were found to be associated with MI/RI after cardiopulmonary bypass in immune cell infiltration. Conclusion The four characteristic genes METTL3, YTHDF1, RBM15B and METTL14 are obtained by machine learning, while cluster analysis and immune cell infiltration analysis can better reveal the pathophysiological process of MI/RI.
ObjectiveTo compare the myocardial protective effect of HTK solution and St.ThomasⅡ(STH) solution in immature rabbit myocardium at different cardiac arrest time. MethodsAccording to cardioplegia and cardiac arrest time, 32 immature New Zealand white rabbits (aged 2-3 weeks) were randomly divided into four groups. A group SO (8 rabbits) underwent 1 hour cardiac arrest with STH solution, a group ST (8 rabbits) underwent 2 hours cardiac arrest with STH solution, a group HO (8 rabbits) underwent 1 hour cardiac arrest with HTK solution, a group Ht (8 rabbits) underwent 2 hours cardiac arrest with HTK solution. Compare the myocardial protective effect of HTK and STH solution in immature myocardium at different cardiac arrest time. ResultsThe Langendorff models were successfully established in 30 cases (8 cases in the group SO and HO, 7 cases in the group ST and HT). There were no statistical differences in hemodynamics and myocardial enzyme (CK-MB, LDH) (P > 0.05), but HTK solution reduced the activity of nitric oxide synthase (NOS) and content of malonaldehyde (MDA) and NO, maintained high activity of superoxide dismutase (SOD) and Ca2+-ATPase (P < 0.05), performed more effective myocardial protection for immature myocardium. ConclusionHTK solution has more effective myocardial protection for immature myocardium than STH solution does, but STH solution still has good outcomes within short cardiac arrest time (1h).
Acute kidney injury (AKI) is characterized by a sudden and rapid decline of renal function and associated with high morbidity and mortality. AKI can be caused by various factors, and ischemia-reperfusion injury (IRI) is one of the most common causes of AKI. An increasing number of studies found out that exosomes of mesenchymal stem cells (MSCs) could alleviate IRI-AKI by the adjustment of the immune response, the suppression of oxidative stress, the reduction of cell apoptosis, and the promotion of tissue regeneration. This article summarizes the effect and mechanism of MSC-derived exosomes in the treatment of renal ischemia-reperfusion injury, in order to provide useful information for the researches on this field.