Objective To explore the relationship between Beclin-1 and the development of pancreatic ductal adenocarcinoma (PDAC). Methods ① Twenty-five PDAC specimens and 20 matched adjacent normal pancreatic tissues were obtained after radical surgery between April 2009 and November 2009 in West China Hospital of Sichuan University. Beclin-1 mRNA and protein expressions were examined by using real-time PCR and immunohistochemistry, respectively. Correlations between expressions of Beclin-1 protein with clinical data of PDAC patients were evaluated. ② PDAC cells were divided into 2 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, and cells of non-transfection group didn’t transfected with PLenO-WPI-Beclin-1 vector. Expressions levels of Beclin-1 mRNA in the 2 groups were detected by real-time PCR at 24 hours and 48 hours after transfection. ③ PDAC cells were divided into 3 groups, cells of transfection group were transfected with PLenO-WPI-Beclin-1 vector, cells of empty vector group transfected with PLenO-WPI, cells of blank control group didn’t accepted any vector. OD value was detected by MTT once a day during 1–7 days after transfection. Results ① Expression levels of Beclin-1 mRNA and its protein were significantly lower in PDAC tissue than those of adjacent normal pancreatic tissues (P<0.05). Increased Beclin-1 expression was associated with early TNM stage of Ⅰ and Ⅱ(P<0.05) and negative distant metastasis (P=0.011). ② At the same time point of 24 hours and 48 hours after transfection, the expression levels of Beclin-1 mRNA were higher in transfection group than those of non-transfection group (P<0.05). ③ MTT assay showed that PANC-1 cell proliferation ability was lower in the transfection group compared to the blank control group and empty vector groups in vitro on day 4–7 after transfection (P<0.05), but there was no significant in the cell proliferation ability among the 3 groups on day 1, 2, and 3 (P>0.05). Conclusions Down regulation of Beclin-1 and autophagy inhibition play an important role in the tumorigenesis and development of PDAC. Activating autophagy via overexpression of Beclin-1 may be a potential treatment for some PDACs and warrants further investigation.
Objective To explore the effect of SB431542 on monkey choroidal-retinal endothelial (RF/6A) cells in high glucose state and its mechanism of regulating mitochondrial autophagy by mediating the PINK1/Parkin pathway. MethodsCell experiments. The minimum effective drug concentration of SB431542 was determined by using the Cell Counting Kit-8 (CCK-8). RF/6A cells cultured in vitro were divided into normal group (NC group), mannitol group, high glucose group (HG group), high glucose with dimethyl sulfoxide group (HG + DMSO group), and high glucose + SB431542 group (HG + SB431542 group). CCK-8 and cell scratch assay were used to detect the proliferation and migration of RF/6A cells induced by high glucose. The expression of autophagosomes was detected by autophagy staining kit; the expression level of reactive oxygen species was detected by reactive oxygen species kit; the expression level of mitochondrial superoxide in cells was detected by MitoSOX fluorescent probe; the mitochondrial membrane potential level in cells was detected by JC-10 staining; the morphology of mitochondria was observed by MitoTracker staining, and the total area of mitochondria, average shape factor and branch length were quantitatively analyzed.Cellular immunofluorescence (IF) staining was used to detect the fluorescence expression of EndMT markers vimentin and VE-cadherin; Western blotting (WB) was used to detect the protein expression of vimentin, VE-cadherin, and mitochondrial autophagy-related proteins TOMM20, LC3, P62, PINK1, and Parkin; one-way analysis of variance was used for comparisons among multiple groups.ResultsThe minimum effective drug concentration of SB431542 was 5 μmol/L. SB431542 significantly inhibited the proliferation and migration of RF/6A cells induced by high glucose (F = 81.92、87.84, P<0.000 1). SB431542 suppressed the expression of reactive oxygen species and mitochondrial superoxide induced by high glucose (F = 429.50, 450.20; P<0.000 1), restored the mitochondrial membrane potential level (F = 315.3, P<0.000 1), and restored the mitochondrial morphology (F = 209.50, P<0.000 1). IF and WB confirmed that SB431542 inhibited the expression of Vimentin induced by high glucose (F = 117.30、51.11; P<0.000 1) and upregulated the expression of VE-cadherin (F = 136.80、27.54; P<0.000 1). WB further confirmed that SB431542 upregulated the protein expression of LC3, PINK1, and Parkin (F = 16.64, 37.72, 32.63; P<0.05) and inhibited the protein expression of TOMM20 and P62 (F = 33.87, 67.77; P<0.01). ConclusionSB431542 upregulates mitochondrial autophagy expression through activation of the PINK1/Parkin pathway, effectively restores mitochondria-related functions to maintain homeostasis, and inhibits high glucose-induced RF/6A cell proliferation,migration,and EndMT formation.
ObjectiveTo investigate the mechanism of early vascularization of the tissue engineered bone in the treatment of rabbit radial bone defect by local injection of angiopoietin 2 (Ang-2).MethodsForty-eight New Zealand white rabbits were established unilateral 1.5 cm long radius defect models. After implantation of hydroxyapatite/collagen scaffolds in bone defects, the rabbits were randomly divided into 2 groups: control group (group A) and Ang-2 group (group B) were daily injected with 1 mL normal saline and 1 mL saline-soluble 400 ng/mL Ang-2 at the bone defect within 2 weeks after operation, respectively. Western blot was used to detect the expressions of autophagy related protein [microtubule associated protein 1 light chain 3 (LC3), Beclin-1], angiogenesis related protein [vascular endothelial growth factor (VEGF)], and autophagy degradable substrate protein (SQSTMl/p62) in callus. X-ray films examination and Lane-Sandhu X-ray scoring were performed to evaluate the bone defect repair at 4, 8, and 12 weeks after operation. The rabbits were sacrificed at 12 weeks after operation for gross observation, and the angiogenesis of bone defect area was observed by HE staining.ResultsWestern blot assay showed that the relative expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1, and VEGF in group B were significantly higher than those in group A, and the relative expression of SQSTMl/p62 was significantly lower than that in group A (P<0.05). Radiographic and gross observation of specimens showed that only a few callus were formed in group A, the bone defect was not repaired; more callus were formed and complete repair of bone defect was observed in group B. The Lane-Sandhu scores in group B were significantly higher than those in group A at 4, 8, and 12 weeks after operation (P<0.05). HE staining showed that the Harvard tubes in group B were well arranged and the number of new vessels was significantly higher than that in group A (t=–11.879, P=0.000).ConclusionLocal injection of appropriate concentration of Ang-2 may promote early vascularization and bone defect repair of tissue engineered bone in rabbits by enhancing autophagy.
Hypoxia inducible factor-1 (HIF-1) is the main transcription factor and the core regulator for cells to adapt to hypoxia, and oxygen homeostasis is achieved by controlling and utilizing oxygen delivery. Autophagy and apoptosis play an important role in determining cell fate and maintaining cell homeostasis. In recent years, it has been found that the dynamic change of HIF-1 expression plays a key role in the hypoxic adaptive response of cardiomyocytes. The regulation of HIF-1 on autophagy and apoptosis of hypoxic cardiomyocytes determines the survival of cardiomyocytes, which is of great significance for the prognosis of ischemic heart disease.
ObjectiveTo evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells (BMECs).MethodsBMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration (0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10?5 mol/L of icariin was added to each group (set as groups A1, B1, C1 and D1, respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3B (LC3B) and dead bone slice 1 (p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin (intervention group) and without icariin (non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA) were assessed by Western blot. The BMECs were further divided into three groups: BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed.ResultsWith the increase of hydrocortisone concentration, the protein expression of LC3B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually (P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin (P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group (t=?10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups (P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group (P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3B-Ⅱ decreased. There were significant differences among groups (P<0.05). When treated with hydrocortisone for 12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group (P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group (P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group (P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group (P<0.05).ConclusionIcariin and BMECs-derived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.
Objective To investigate the effect of epigallocatechin gallate (EGCG) on chondrocyte senescence and its mechanism. Methods The chondrocytes were isolated from the articular cartilage of 4-week-old Sprague Dawley rats, and cultured with type Ⅱcollagenase and passaged. The cells were identified by toluidine blue staining, alcian blue staining, and immunocytochemical staining for type Ⅱ collagen. The second passage (P2) cells were divided into blank control group, 10 ng/mL IL-1β group, and 6.25, 12.5, 25.0, 50.0, 100.0, and 200.0 μmol/L EGCG+10 ng/mL IL-1β group. The chondrocyte activity was measured with cell counting kit 8 after 24 hours of corresponding culture, and the optimal drug concentration of EGCG was selected for the subsequent experiment. The P2 chondrocytes were further divided into blank control group (group A), 10 ng/mL IL-1β group (group B), EGCG+10 ng/mL IL-1β group (group C), and EGCG+10 ng/mL IL-1β+5 mmol/L 3-methyladenine (3-MA) group (group D). After cultured, the degree of cell senescence was detected by β-galactosidase staining, the autophagy by monodansylcadaverine method, and the expression levels of chondrocyte-related genes [type Ⅱ collagen, matrix metalloproteinase 3 (MMP-3), MMP-13] by real-time fluorescent quantitative PCR, the expression levels of chondrocyte-related proteins (Beclin-1, LC3, MMP-3, MMP-13, type Ⅱ collagen, P16, mTOR, AKT) by Western blot. Results The cultured cells were identified as chondrocytes. Compared with the blank control group, the cell activity of 10 ng/mL IL-1β group significantly decreased (P<0.05). Compared with the 10 ng/mL IL-1β group, the cell activity of EGCG+10 ng/mL IL-1β groups increased, and the 50.0, 100.0, and 200.0 μmol/L EGCG significantly promoted the activity of chondrocytes (P<0.05). The 100.0 μmol/L EGCG was selected for subsequent experiments. Compared with group A, the cells in group B showed senescence changes. Compared with group B, the senescence rate of chondrocytes in group C decreased, autophagy increased, the relative expression of type Ⅱ collagen mRNA increased, and relative expressions of MMP-3 and MMP-13 mRNAs decreased; the relative expressions of Beclin-1, LC3, and type Ⅱ collagen proteins increased, but the relative expressions of P16, MMP-3, MMP-13, mTOR, and AKT proteins decreased; the above differences were significant (P<0.05). Compared with group C, when 3-MA was added in group D, the senescence rate of chondrocytes increased, autophagy decreased, and the relative expressions of the target proteins and mRNAs showed an opposite trend (P<0.05). ConclusionEGCG regulates the autophagy of chondrocytes through the PI3K/AKT/mTOR signaling pathway and exerts anti-senescence effects.
Objective To investigate whether miRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colon cancer cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway. Methods miR-34a expression levels were detected in colon cancer tissues and colon cancer cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Computational search, functional luciferase assay, and Western blotting method were used to demonstrate the downstream target of miR-34a in colon cancer cells. Cell viability was measured with cell counting kit-8. Apoptosis and macroautophagy of colon cancer cells were analyzed by flow cytometry and transmission electron microscopy, and expressions of Beclin1 and LC3Ⅱ protein were detected by Western blotting method. Results Expression of miR-34a was significantly reduced while expressions of TGF-β and Smad4 mRNA were increased in colon cancer patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a expression levels and increased TGF-β and Smad4 expression levels in both parental cells and the OXA-resistant colon cancer cells. Activation of macroautophagy contributed to OXA resistance in colon cancer cells. Expression levels of Smad4 and miR-34a in colon cancer patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in colon cancer cells. Conclusion miR-34a mediates OXA resistance of colon cancer by inhibiting autophagy via the TGF-β/Smad4 pathway.
Epilepsy is one of the most common neurological disorders, and status epilepticus (SE) can lead to permanent neuronal brain damage in the central nervous system, but the mechanism is not clear. Solving this problem will help to find more SE therapeutic targets, benefiting tens of millions of epilepsy patients. The pathway of SE leading to neuronal damage in the brain has made new progress in neuroinflammation, autophagy, apoptosis and pyroptosis, glial cell hyperplasia and category transformation, and changes in neurotransmitters in the brain, which will be beneficial to the discovery of new targets for the treatment of SE, thus laying a foundation for the development of new anti-epileptic drugs.
Neonatal broncho-pulmonary dysplasia (BPD) is a common chronic lung disease in premature infants, with a complex pathogenesis and limited treatment options, severely affecting health. In recent years, targeted autophagy and mesenchymal stem cell (MSC) have received attention as potential therapeutic approaches. Autophagy is crucial in the development of BPD, as it can improve pathological processes such as alveolarization disorders, abnormal pulmonary vascular development, and inflammatory responses through targeted regulation, and enhance the pulmonary microenvironment. Meanwhile, MSC is considered to have promising applications in promoting lung development and repair due to immune regulatory properties and paracrine functions. This article reviews the mechanisms and synergistic effects of targeted autophagy and MSC therapy for BPD, providing a theoretical basis for optimizing clinical treatment strategies for BPD and improving the quality of life of premature infants.
Atherosclerotic cardiovascular disease (ASCVD) is a disease caused by the accumulation of atherosclerotic plaques that leads to arterial hardening and impairment of contractility. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can increase low-density lipoprotein cholesterol levels in plasma, which accelerates the development and progression of ASCVD. This article intends to review the biological characteristics and functional mechanisms of PCSK9, elucidate its impact on the development and progression of ASCVD, provide research literature support for the diagnosis and treatment of such diseases and improving the prognosis of patients.