ObjectiveTo explore the therapeutic effect of angiotensin-converting enzyme 2 (ACE2) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a rat model. MethodsTwenty-four Wistar rats were randomly divided into a control group, an ALI group, and an ACE2 group.The rat ALI model was established by intravenous injection of LPS.Then the rats in the ACE2 group received intraperitoneally injection of recombinant rat ACE2 by 0.1 mg/kg immediately after LPS injection.All rats were sacrificed 2 hours later.Rat arterial blood gas was analyzed and wet/dry (W/D) weight ratio of lung tissue was measured.Concentrations of TNF-α, IL-8 and IL-1βin lung tissue homogenates were measured by ELISA.Pulmonary pathological changes were evaluated by hematoxylin-eosin stain under light microscope. ResultsALI induced by LPS was successfully established in the rats.ACE2 pretreatment markedly impoved PaO2 level of the ALI rats(P < 0.05), and decreased the lung W/D ratio(P < 0.05).The concentration of TNF-α, IL-8 and IL-1βin lung tissue homogenates were also inhibited by ACE2.And the lung histopathological changes and score were attenuated in the ACE2 group. ConclusionACE2 treatment has therapeutic effects on ALI induced by LPS.
Objective To investigate the influence of lipopolysaccharide(LPS) on the proliferation and collagen synthesis of normal human skin fibroblasts so as to elucidate its relation with skin wound healing. Methods Fibroblasts wereisolated and cultured in vitro, and then exposed to different doses of LPS(0.005, 0.010, 0.050, 0.100, 0.500, and 1.000 μg/ml) from E.coli055∶B5 respectively. Then the absorbance (A) value of fibroblasts was determined with the colorirneteric thiazolylblue (MTT) assay, and the cell number was counted under inverted phase contrast microscope from the 1st day to the 9th day after LPS administration, and collagen synthesis of fibroblasts in culture medium was measured with the method of pepsin digestion after incorporation of 3Hproline into stable, single-layered, confluent fibroblasts at 7 days after LPS administration. Results Compared with control group, A value increased with the increasing concentration of LPS (0.005 μg/ml 0.500 μg/ml) and LPS of 0.100 μg/mlgroup had the best effect. The difference was remarkable from the 5th day to the 9th day(P<0.05). A value decreased when challenged with the LPS of 1.000 μg/ml and the difference was remarkable from the 3rd day to the 9th day(P<0.05). Cell number increased with theadministration of LPS of different concentrations (0.005 μg/ml 0.500 μg/ml) and LPS of 0.100 μg/mlgroup had the best effect. The difference was remarkable from the 1st day to the 6th day(P<0.05). Cell number decreased remarkably when challenged with LPS of 1.000 μg/ml and the difference was remarkable from the 2nd day to the 9th day(P<0.05). Collagen synthesis increased when challenged with LPS of different concentrations (0.005 μg/ml 0.500 μg/ml) and the 0.100 μg/ml group had the best effect. However, when the dose of LPS reached 1.000 μg/ml, it inhibited collagensynthesis. Conclusion LPS could promote the proliferation andcollagen synthesis of fibroblasts within a certain range of low doses, but over-high dose ofLPS might inhibit the proliferation and collagen synthesis of fibroblasts, suggesting that LPS of certain concentrations might contribute to wound healing, while excessive LPS has negative effect on wound healing.
Objective To investigate whether P12,a kind of lipopolysaccharide(LPS)-binding protein(LBP) inhibitory peptide,could suppress the binding of LPS to alveolar macrophages(AMs) in a mouse model of endotoxemia in vivo.Methods Forty mice were randomly divided into five groups,ie.a control group,an endotoxemia group,a low dose P12-treated group,a middle dose P12-treated group and a high dose P12-treated group.Mouse model of endotoxemia was established by LPS injection intraperitoneally in the endotoxemia group and P12-treated groups.P12 was instilled via the tail vein.The effects of P12 on the binding of LPS to AMs were determined by flow cytometric analysis and quantization by mean fluorescence intensity(MFI).The productions of tumor necrosis factor α(TNF-α) in serum of mice were measured by enzyme-linked immunosorbent assay(ELISA).Results MFI in AMs from low,middle and high dose P12-treated groups was 40.08%,30.76% and 24.45%,respectively,which was higher than that of the control group(4.61%),but less than that of the endotoxemic mice(45.31%).The concentration of TNF-α in serum of low,media and high dose P12-treated mice was (112.69±19.78)pg/mL,(86.34±9.25) pg/mL,(70.48±8.48)pg/mL respectively,which was higher than that of the control group[(24.88±5.82)pg/mL],but less than that of the endotoxemic mice[(180.17±39.14)pg/mL].Conclusion The results suggest that P12 inhibit the binding of LPS and AMs,thus reduce the proudction of TNF-α stimulated by LPS.
ObjectiveTo investigate the effects of interleukin (IL)-26 on the late phase of lipopolysaccharides (LPS)-induced lung inflammation in mouse model.MethodsThirty-two mice were equally and randomly divided into four groups: blank control group, IL-26 control group, LPS model group, and IL-26 intervention group. The blank control group was given intranasal administration of phosphate buffered solution (PBS, 40 μl) and PBS (40 μl) 10 minutes apart. The IL-26 control group was given recombinant human interleukin-26 (rhIL-26; 50 μg/kg, dissolved in 40 μg PBS) and PBS successively. The LPS model group was given intranasal administration of PBS (40 μl) and LPS (10 mg/kg, dissolved in 40 μl PBS) at 10 minutes interval. The IL-26 intervention group was given intranasal administration of rhIL-26 and LPS at 10 minutes interval. Seventy-two hours later after treatment, bronchoalveolar lavage fluid (BALF) cell count, cytokine assay and pathological staining of lung tissue were performed in each group. The gene expression of inflammatory pathway in lung tissue was detected by RT-PCR. One-way ANOVA was used for comparison between groups. ResultsCompared with the blank control group, the expression of tumor necrosis factor-α and activating transcription factor 3 in IL-26 control group increased significantly (all P < 0.05). The number of peripheral blood mononuclear cells, total BALF cells, lymphocytes and neutrophils, and the content of macrophage inflammatory protein-1a in BALF were significantly increased in IL-26 intervention group comparing with LPS model group (all P < 0.05). IL-26 intervention group had more inflammatory subsidence in interstitial, perivascular, peribronchial and mean values than LPS model group (all P < 0.05). The expressions of Toll-like receptor 4, Toll-like receptor 2 and interferon γ induced protein 10 in IL-26 intervention group were significantly higher than those in LPS model group (all P < 0.05).ConclusionIL-26 can significantly alleviate the late inflammatory reaction of lung tissue in LPS-induced mouse inflammation model.
ObjectiveTo investigate whether the miR-33s negatively regulates LPS-induced production of inflammatory cytokines by targeting p38 MAPK. MethodsHuman monocytes THP-1 cells were cultured in vitro and transfected with miR-33s mimic (25 nmol/L) or miR-33s inhibitor (25 nmol/L)by TransIT-X2? Dynamic Delivery System for 24 h. Then the transfected THP-1 cells were stimulated by LPS of 10.0 ng/mL for 24 h. The expression of miR-33s and p38 MAPK protein were measured by semi-quantitative RT-PCR. The concentrations of TNF-α,IL-6 and IL-1β in the cultured supernatant were assessed by ELISA. ResultsThe transfection of miR-33s mimic significantly increased the release of TNF-α,IL-6 and IL-1β(P<0.05). The expression of p38 MAPK protein was also significantly reduced(P<0.05). However,the pre-treatment of miR-33s inhibitor reversed the LPS-induced release of TNF-α,IL-6,and IL-1β,and the expression of p38 MAPK protein of THP-1 cells. ConclusionmiR-33s may play an important role in the regulation in inflammatory factors released from THP-1 cells by targeting p38 MAPK.
Objective To investigate the transduction pathway of TREM-1 during endotoxininduced acute lung injury ( ALI) in mice through the specific activating or blocking TREM-1.Methods 40 mice were randomly divided into a saline control group, an ALI group, an antibody group, and a LP17 group ( 3.5 mg/kg) . All mice except the control group were intraperitoneally injected with lipopolysaccharide ( LPS) to establish mouse model of ALI. Two hours after LPS injection, anti-TREM-1mAb ( 250 μg/kg) was intraperitoneally injected in the antibody group to activation TREM-1, and synthetic peptide LP17 was injected via tail vein in the LP17 group to blocking TREM-1. After 6,12,24, 48 hours, 3 mice in each group were sacrificed for sampling. The expression of NF-κB in lung tissue was determined by immunohistochemistry. The levels of TNF-α, IL-10, TREM-1, and soluble TREM-1 ( sTREM-1) in lung tissue and serumwere measured by ELISA. Pathology changes of lung were observed under light microscope, and Smith’s score of pathology was compared. Results Administration of anti-TREM-1mAb after ALI modeling significantly increased the NF-κB expression in lung tissue at 48h, resulting in a large number of pro-inflammatory cytokines releasing in the lung tissue and serumand lung pathology Smith score increasing. Administration of LP17 after modeling significantly down-regulated the expressions of NF-κB and pro-inflammatory cytokines, while led to a slight increase of anti-inflammatory cytokines and a decline of lung pathology Smith’s score.Conclusion TREM-1 may involve in inflammatory response by promoting the generation of inflammatory factors via NF-κB pathway, thus lead to lung pathological changes in ALI.
ObjectiveTo investigate the role of the p38 MAPK signaling pathway in sTREM-1 expression of RAW264.7 cells induced by lipopolysaccharide (LPS). MethodsMacrophage cell line RAW264.7 cells were cultured in vitro and induced with the same concentration of LPS at different time. The protein expressions of p38 MAPK and phosphorylation of p38 MAPK(p-p38 MAPK) were detected by Western blot. The mRNA expression of p38 MAPK was detected by RT-PCR. The level of sTREM-1 was detected by enzyme linked immunosorbent assay method.The RAW264.7 cells were treated by SB203580 at different concentration,the changes of above indexes were observed. ResultsThe p-p38 MAPK and p38 MAPK mRNA could be inducted by LPS in a time-dependent manner. The p-p38 MAPK and p38 MAPK mRNA could be inhibited by SB203580. After SB203580 blocking p38 MAPK signal transduction pathway,the sTREM-1 expression was significantly inhibited in a dose dependent manner. ConclusionLPS can induce sTREM-1 expression in RAW264.7 cells by activating the p38 MAPK signaling pathway.
Objective To investigate the effects of cytokines on the expression of syndecan-1 in cultured human retinal pigment epithelial (RPE) cells and the signal transduction pathway. Methods Reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of syndecan-1 mRNA and protein in normal RPE cells. The expression of syndecan-1 in RPE cells stimulated by different cytokines was detected and quantitatively analyzed by image process of immunofluorescence. The stimulation included 7 and 35 ng/ml tumor necrosis factor (TNF)-alpha; for 24 hours, 1 and 6 mu;g/ml lipopolysaccharide (LPS) for 11 hours, 7 ng/ml TNF-alpha; for 0 to 24 hours (once per 2 hours, and 13 times in total), and 30% supernatant of monocyte/macrophage strain (THP-1 cells) for 3, 14 and 43 hours. The effect of 30% supernatant of THP-1 cells was assayed after pretreated by PD098059[the specific inhibitor of extracellular signal regulated kinase(ERK) 1/2]for 2 hours. After exposed to 30% supernatant of THP-1 cells for 3 hours and treated by 0.25% trypsin for 5 minutes, RPE cells attaching was evaluated by methyl thiazolyl tetrazolium assay. Results In normal human RPE cells, expressions of syndecan-1 mRNA and protein were detected, and b syndecan-1 positive yellowish green fluorescence was found in the cell membrane and cytoplasm while light green fluorescence was in the nucleus. As the concentration and stimulated time of TNF-alpha; or LPS increased, the fluorescence intensity decreased(Plt;0.01), and after exposed to 30% supernatant of THP-1 cells, weaker fluorescence intensity was detected (Plt;0.001). Pretreatment with 50 mu;mol/L PD098059 for 2 hours partly inhibited the effect of THP-1 cells supernatant. After exposed to 30% supernatant of THP-1 cells for 3 hours, the number of attached cells decreased compared with the controls(Plt;0.05). Conclusions TNF-alpha; and LPS down-regulate the expression of syndecan-1 in cultured human RPE cells. The supernatant of THP-1 cells down-regulates the expression of syndecan-1 and lessens the cells attaching, which is at least mediated by ERK 1/2 pathway. (Chin J Ocul Fundus Dis, 2006, 22: 113-116)
ObjectiveTo compare the different effects of ubiquitin(UB) on human umbilical vein endothelial cells (HUVECs) and macrophages under normal circumstances,and analyze whether UB could protect HUVECs from lipopolysaccharide(LPS) induced injury. MethodsThe morphologic changes of HUVECs in vitro with up-rising concentrations of UB interventions were observed. HUVECs and human macrophages in vitro were divided into 4 groups according to UB concentration (0.01 μg/mL,0.1 μg/mL, 1 μg/mL, and 10 μg/mL). Supernatant and cells of each group were collected in 24 h after UB intervention. The levels of TNF-α and VCAM-1 in supernatant were measured by ELISA while NF-κB protein level in cells was detected by Western blot. HUVECs were divided into a LPS group(LPS 10 μg/mL) and an UB+LPS group(UB 0.1 μg/mL,LPS 10 μg/mL). The supernatant of the two groups were collected in 8,16 and 24 h after LPS and UB intervention. The levels of TNF-α and VCAM-1 in supernatant were measured by ELISA. ResultsThe injury of HUVECs got worse with the ascending concentrations of UB.At the concentration of 50 μg/mL,UB induced HUVECs got ballooned and died massively. With the increase of UB concentration,the levels of TNF-α and VCAM-1 in HUVECs' supernatant ascended firstly and then descended,while those in human macrophages' supernatant ascended gradually. zHowever,the tendency of the NF-κB protein level in the two kinds of cells was similar when the concentration of UB increased.At the consentration of 0.1 μg/mL or 1 μg/mL,ubiquitin induced NF-κB protein level obviously increased.At the concentration of 0.01 μg/mL or 10 μg/mL,UB induced the protein level was similar with those of the control group and even decreased slightly. There was no significant difference in TNF-α or VCAM-1 levels at each time point between the LPS group and the UB+LPS group. ConclusionsUB injuries HUVECs obviously at a low concentration but injuires human macrophages at much higher concentraton. UB can not protect HUVECs from LPS-induced injury in vitro.
ObjectiveTo study the protective effect and mechanism of ophiopogonin D (OP-D) on lipopolysaccharide induced acute lung injury (ALI) in mice.MethodsFifty SPF C57BL/6 mice were randomly divided into five groups, ie. a control group, a sham operation group, a model group, an OP-D group (10 mg·kg–1·d–1), and a dexamethasone group (2 mg·kg–1·d–1), with 10 mice in each group. One day before the establishment of the model, the OP-D group and the dexamethasone group received the corresponding drugs by gavage. The model group, the OP-D group and the dexamethasone group received lipopolysaccharide (2 mg/kg, 30 μL) through the trachea to establish the ALI model. The sham operation group received the same volume of normal saline. The blank control group was not treated. Six hours after the operation, the mice were weighed and then killed for peripheral blood and lung tissue. The weight of lung tissue was measured to evaluate the degree of pulmonary edema; the pathological changes of lung tissue were observed by hematoxylin-eosin staining; the mRNA expressions of interleukin (IL)-6, IL-10, and IL-17 in lung tissue were detected by qPCR; the percentage of Th17 and Treg cells in peripheral blood was detected by flow cytometry.ResultsCompared with the model group, the degree of pulmonary edema in the OP-D group decreased significantly (P<0.05), the lung tissue injury decreased, the mRNA expressions of IL-6 and IL-17 in the lung tissue and the proportion of Th17 cells in the peripheral blood decreased significantly (P<0.05), the proportion of Treg cells in the peripheral blood and the mRNA expression of IL-10 in the lung tissue increased significantly (P<0.05).ConclusionOP-D may have therapeutic effect on LPS induced ALI in mice by regulating the balance of Th17/Treg cells.