ObjectiveTo comprehensively analyze the recent advancements in the field of mesenchymal stem cells (MSCs) derived exosomes (MSCs-exosomes) in tissue repair. MethodsThe literature about MSCs-exosomes in tissue repair was reviewed and analyzed. ResultsExosomes are biologically active microvesicles released from MSCs which are loaded with functional proteins, RNA, and microRNA. Exosomes can inhibit apoptosis, stimulate proliferation, alter cell phenotype in tissue repair of several diseases through cell-to-cell communication. ConclusionMSCs-exosomes is a novel source for the treatment of tissue repair. Further research of MSCs-exosomes biofunction, paracellular transport, and treatment mechanism will help the transform to clinical application.
ObjectiveTo observe the effects of exosomes derived from rat mesenchymal stem cells (MSC-exosomes) on the rat experimental autoimmune uveitis (EAU) model.MethodsTwelve Lewis rats were randomly divided into experimental group and control group by random number table, with 6 rats in each group. Rats in the experimental group were established with EAU model, 100 μl of MSC-exosomes (50 μg) were periocular injected on the 9th day after modeling while the control rats were injected with the same volume of phosphate buffer. At different time points after modeling, the retinal structure was observed by hematoxylin and eosin (HE) staining, and the clinical and pathological manifestations were evaluated. T cells from the two groups were analyzed by flow cytometry. Immunohistochemical staining was used to observe the expression of macrophage surface marker CD68. The effect of MSC-exosomes on T cells was measured by lymphocyte proliferation assays. And flow cytometry was used to detect Th1, Th17 and regulatory T cells Variety. Electroretinogram (ERG) was used to evaluate the retinal function. Data were compared between the two groups using the t test.ResultsHE staining showed that the retina structure of the experimental group was more complete than that of the control group on the 15th day after modeling. Immunohistochemical staining showed that the positive expression of CD68 in the experimental group was significantly less than that in the control group. On the 15th day after modeling, the retinal pathological score of the experimental group was lower than that of the control group. On the 9th to 13th day after modeling, compared to the control group, the average clinical scores of the retina in the experimental group were lower, and the difference was statistically significant (t=3.665, 3.21, 3.181, 4.121, 3.227; P<0.01). The results of T cell proliferation assay showed that exosomes (1.0, 10.0 μg/ml) inhibited the proliferation of T cells under different concentrations of R16 (1, 10, 30 μg/ml), and the difference was statistically significant (F=11.630, 4.188, 6.011; P<0.05). The results of flow cytometry showed that the number of Th1, Th17 and Treg cell subsets in the experimental group was decreased compared with the control group, and the difference was statistically significant (t=7.374, 4.525, 6.910; P<0.01). There was no difference in the proportion of cells in the T cells and lymph nodes (t=1.126, 0.493, 0.178; P=0.286, 0.632, 0.862). The results of ERG showed that, compared with the control group, the amplitudes of 0.01, 3.0 cd/m2 a wave and b wave of the experiment group were all increased on the 15th day after modeling, and the differences were statistically significant (t=3.604, 4.178, 4.551, 2.566, P<0.05).ConclusionsMSC-exosomes can reduce the clinical and pathological manifestations of EAU, protect retinal function, reduce ocular macrophage infiltration, down-regulate the proportion of inflammatory cells in the eye, and inhibit T cell proliferation.
ObjectiveTo review the mechanisms of bioactive substances of mesenchymal stem cells-derived exosomes (MEX) in tissue repair and analyze the therapeutic values of MEX. MethodRecent relevant literature about MEX for tissue repair was extensively reviewed and analyzed. ResultsThe diameter of exosomes ranges from 30 to 100 nm which contain an abundance of bioactive substances, such as mRNA, microRNA, and protein. The majority of the exact bioactive substances in MEX, which are therapeutically beneficial to a wide range of diseases, are still unclear. ConclusionsBioactive substances contained in the MEX have repairing effect in tissue injury, which could provide a new insight for the clinical treatment of tissue damage. However, further studies are required to investigate the individual differences of MEX and the possible risk of accelerating cancer progression of MEX.
Mesenchymal stem cells (MSCs) are considered as an ideal treatment for multiple diseases including ocular disease. Recent studies have demonstrated that MSCs-derived exosomes have similar functions with MSCs. Exosomes are nanovesicles surrounded by a phospholipid layer that shuttle active cargo between different cells. They are capable of passing the biological barrier and have potentials to be utilized as natural carrier for the ocular drug delivery.
Exosomes are a type of tiny vesicles released by cells, which contain bioactive molecules such as proteins, nucleic acids, and lipids secreted by cells. Exosomes released by different cells play an important role in tumor development and metastasis. These exosomes can regulate the tumor microenvironment, promote the tumor growth and invasion, and participate in the process of distant metastasis by carrying specific proteins and nucleic acids. In addition, some biomarkers in exosomes can serve as potential biomarkers for early diagnosis and prognosis evaluation of osteosarcoma. This article reviews the research progress of exosomes in osteosarcoma, aiming to gain a deeper understanding of their mechanisms of action in this disease and provide a reference for the development of new treatment strategies and prognostic evaluation indicators.
ObjectiveTo observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSC) on the expression of vascular endothelial growth factor (VEGF) A in blue light injured human retinal pigment epithelial (RPE) cells. MethodshUCMSC were cultured with exo-free fetal bovine serum for 48 hours, and then the supernatants were collected to isolate and purify exosomes by gradient ultracentrifugation method. Transmission electron microscopy was used to identify the morphology of exosomes. Surface specific maker protein CD63 and CD90 were detected via Western blot. Cultured ARPE-19 cells were divided into normal control group, blue light injured group and hUCMSC exosomes treated group. Cells were exposed to the blue light at the intensity of (2000±500) Lux for 12 hours to establish the light injured models. The cells of hUCMSC exosomes treated group were treated by different concentrations of exosomes for 8, 16, 24 hours. The mRNA and protein of VEGF-A were determined by real time-polymerase chain reaction and Western blot. Immunofluorescence assay were used to detect the expression levels of VEGF-A. ResultshUCMSC exosomes were successfully isolated, they exhibited round or oval shape and their diameter ranged from 50 to 100 nm with membrane structure through electron microscope. hUCMSC exosomes expressed the common surface marker protein CD63 and the surface marker protein CD90 of hUCMSC. The protein and mRNA level of VEGF A in the blue light injured group increased significantly compared to that in normal control group (t=-16.553, -19.456; P < 0.05). After treating with low, middle and high concentration of hUCMSC exosomes for 8, 16 and 24 hours, the protein and mRNA level of VEGF A of injured RPE were significantly decreased (P < 0.05). With the treated time and concentration of hUCMSC exosomes improved, the protein and mRNA level of VEGF A of injured RPE gradually decreased (P < 0.05). Immunofluorescence assay showed the protein level of VEGF-A of injured RPE gradually decreased with the same concentration of hUCMSC exosomes treated over time. ConclusionhUCMSC exosomes can effectively down-regulate the mRNA and protein level of VEGF-A in blue light injured RPE, the effect depends on the concentration and treated time of hUCMSC exosomes.
Exosomes derived from mesenchymal stem cells are a class of discoid extracellular vesicles with a diameter of 40—100 nm discovered in recent years. They contain abundant nucleic acids, proteins and lipids, and have abundant biological information. Exosomes derived from mesenchymal stem cells regulate cell activities by acting on receptor cells, and promote regeneration of many tissues, such as bone, cartilage, skin, intervertebral disc, and spinal nerves. Studies have shown that exosomes derived from mesenchymal stem cells have similar biological functions as mesenchymal stem cells, and are more stable and easier to be preserved. Therefore, they have been increasingly applied in the field of orthopedic tissue repair in recent years. This paper reviews the application of exosomes derived from mesenchymal stem cells in orthopedics.
Objective To investigate the protective effect of the exosome on the organ damage induced by ische-mia-reperfusion (I/R) so as to provide a new way for the treatment of I/R damage. Methods The literature related to the treatment of I/R damage was reviewed and analyzed. Results The exosome volume is small and it is present in blood, cerebrospinal fluid, and urine, which has the function to cross the blood-brain barrier, and protect the heart, brain and other organs after I/R damage. Conclusion Exosome is a new material for the treatment of I/R organ injury, and it is important to understand the protective effect and possible mechanism.
Objective To explore a method of loading exosomes onto absorbable stents. MethodsBy building a stent-(3-aminopropyl) triethoxysilane-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 5000]-exosomes connection, the exosomes were loaded onto absorbable stents to obtained the exosome-eluting absorbable stents. The surface conditions of the stents and absorption of exosomes were observed by scanning electron microscope and identified through the time-of-flight mass spectrometry; the roughness of the stents’ surfaces was observed by atomic force microscope; the appearances and sizes of the stents were observed by stereomicroscope; and the radial force was tested by tensile test machine. The absorbable stents were used as control. Results The scanning electron microscope observation showed that the exosome-eluting absorbable stents had some small irregular cracks on the surface where many exosomes could be seen. The atomic force microscopy observation showed that within the range of 5 μm2, the surface roughness of the absorbable stents was ±20 nm, while the surface roughness of the exosome-eluting absorbable stents was ±70 nm. In the results of time-of-flight mass spectrometry, both the exosome-eluting absorbable stents and exosomes had a peak at the mass charge ratio of 81 (m/z 81), while the absorbable stents did not have this peak. The peak of exosome-eluting absorbable stents at m/z 73 showed a significant decrease compared to the absorbable stents. The stereomicroscope observation showed that the sizes of exosome-eluting absorbable stents met standards and the surfaces had no cracks, burrs, or depressions. The radial force results of the exosome-eluting absorbable stents met the strength standards of the original absorbable stent. Conclusion By applying the chemical connection method, the exosomes successfully loaded onto the absorbable stents. And the sizes and radial forces of this exosome-eluting absorbable stents meet the standards of the original absorbable stents.
ObjectiveTo investigate the effects of exosomes from adipose-derived stem cells (ADSCs) on peripheral nerve regeneration, and to find a new treatment for peripheral nerve injury. MethodsThirty-six adult Sprague Dawley (SD) rats (male or female, weighing 220-240 g) were randomly divided into 3 groups (n=12). Group A was the control group; group B was sciatic nerve injury group; group C was sciatic nerve injury combined with exosomes from ADSCs treatment group. The sciatic nerve was only exposed without injury in group A, and the sciatic nerve crush injury model was prepared in groups B and C. The SD rats in groups A and B were injected with PBS solution of 200 μL via tail veins; the SD rats in group C were injected with pure PBS solution of 200 μL containing 100 μg exosomes from ADSCs, once a week and injected for 12 weeks. At 1 week after the end of the injection, the rats were killed and the sciatic nerves were taken at the part of injury. The sciatic nerve fiber bundles were observed by HE staining; the SCs apoptosis of the sciatic nerve tissue were detected by TUNEL staining; the ultrastructure and SCs autophagy of the sciatic nerve were observed by transmission electron microscope. ResultsGross observation showed that there was no obvious abnormality in the injured limbs of group A, but there were the injured limbs paralysis and muscle atrophy in groups B and C, and the degree of paralysis and muscle atrophy in group C were lighter than those in group B. HE staining showed that the perineurium of group A was regular; the perineurium of group B was irregular, and there were a lot of cell-free structures and tissue fragments in group B; the perineurium of group C was more complete, and significantly well than that of group B. TUNEL staining showed that the SCs apoptosis was significantly increased in groups B and C than in group A, in group B than in group C (P<0.01). Transmission electron microscope observation showed that the SCs autophagosomes in groups B and C were significantly increased than those in group A, but the autophagosomes in group C were significantly lower than those in group B. ConclusionThe exosomes from ADSCs can promote the peripheral nerve regeneration. The mechanism may be related to reducing SCs apoptosis, inhibiting SCs autophagy, and reducing nerve Wallerian degeneration.