Objective To evaluate the efficacy and safety of dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema (ME) secondary to retinal vein occlusion (RVO). Methods Thirty-nine patients (39 eyes) with ME secondary to RVO were enrolles in this study. Of the patients, 27 were male and 12 were female. The mean age was (41.9±16.3) years. The mean course of disease was (5.0±5.3) months. The best corrected visual acuity (BCVA), intraocular pressure and optical coherence tomography (OCT) were performed. BCVA was measured by Early Treatment Diabetic Retinopathy Study charts. Central macular thickness (CMT) was measured by OCT. The mean BCVA was (13.4±15.3) letters. The mean intraocular pressure (IOP) was (14.1±2.8) mmHg (1 mmHg=0.133 kPa). The mean CMT was (876.1±437.9) μm. Of the 39 eyes, 33 were central RVO, 6 were branch RVO. Patients were categorized into ischemic (18 eyes)/non-ischemic (21 eyes) groups and previous treatment (22 eyes)/treatment na?ve (17 eyes) groups. All eyes underwent intravitreal 0.7 mg Ozurdex injections. BCVA, IOP and CMT were assessed at 1, 2, 3, 6, 9, 12 months after injection. Three months after injection, intravitreal injections of Ozurdex, triamcinolone acetonide or ranibizumab could be considered for patients with ME recurrence or poor treatment effects. Change of BCVA, IOP and CMT were evaluated with paired t test. The presence of ocular and systemic adverse events were assessed. Results BCVA, IOP significantly increased and CMT significantly decreased at 1 month after injection compared to baseline in all groups (t=3.70, 3.69, 4.32, 3.08, 4.25, 6.09, 6.25, 4.02, 5.49, 8.18, 6.54, 5.73; P<0.05). Two months after injection, change of BCVA, IOP and CMT was most significant (t=4.93, 6.80, 6.71, 5.53, 4.97, 5.89, 5.13, 7.68, 7.31, 8.67, 8.31, 5.82; P<0.05). Twelve months after injection, there was no statistical difference regarding BCVA of ischemic RVO group and previous treatment group, compared to baseline (t=1.86, 0.67; P>0.05); BCVA of non-ischemic RVO group and treatment na?ve group significantly increased compared to baseline (t=2.27, 2.30; P<0.05); there was no statistical difference regarding IOP in all groups (t=0.30, 0.13, 0.64, 1.53; P>0.05);however, CMT significantly decreased in all groups (t=4.60, 3.26, 3.00, 4.87; P<0.05). Twenty-seven eyes (69.2%) experiences ME recurrence (4.5±1.5) months after injection. Most common side-effect was secondary glaucoma. 41.0% eyes had IOP more than 25 mmHg, most of which were lowered to normal range with use of topical IOP lowering drugs. Four eyes (10.3%) presented with significant cataract progression and needed surgical treatment, all were central RVO eyes. No serious ocular or systemic adverse events such as vitreous hemorrhage, retinal detachment or endophthalmitis were noted. Conclusions Intravitreal injection of Ozurdex for patients with ME secondary to RVO is effective in increasing BCVA and lowering CMT in the first few months. Significant treatment effect could be seen at 1 month after injection and was most significant at 2 months after injection. The long-term vision of eyes in non-ischemic RVO group and treatment na?ve group are better. 69.2% eyes experience ME recurrence at 4 months after injection. Short term adverse events were mostly secondary glaucoma and long term adverse events are mostly cataract progression.
Objective To observe and analyze the risk factors of secondary intraocular hypertension in diabetic macular edema (DME) patients after treatment with dexamethasone vitreous cavity implant (DEX). MethodsA retrospective observational study. A total of 352 patients with type 2 diabetes mellitus (T2DM) secondary macular edema diagnosed by ophthalmic examination and treated with DEX in Department of Ophthalmology of Harbin 242 Hospital from January 2016 to March 2022 were included in the study. Among them, 221 were males and 131 were females, with the mean age of (55.56±8.09) years. There were 194 patients with disseminated macular edema, 158 patients with cystoid macular edema. All patients underwent vitreous cavity implantation of DEX. Intraocular pressure (IOP) was measured once a month for 3 months after treatment, with IOP over than 25 mm Hg (1 mm Hg=0.133 kPa) or higher than 10 mm Hg from baseline as secondary intraocular hypertension. The relevant clinical data were collected, and the risk factors of secondary intraocular hypertension in DME patients after DEX treatment were analyzed by binary logistic regression. ResultsAmong 352 patients, 116 patients (32.95%, 116/352) were in the intraocular hypertension. Among them, 29 patients (25.00%, 29/116), 69 patients (59.48%, 69/116) and 18 patients (15.52%, 18/116) occurred intraocular hypertension at 1, 2 and 3 months after treatment, respectively. Compared with the normal IOP group, the IOP in the intraocular hypertension group increased significantly at 1, 2 and 3 months after treatment, with statistical significance (t=10.771, 21.116, 13.761; P<0.001). Compared with normal IOP group, the patients in the intraocular hypertension group had younger age (t=6.967), longer duration of diabetes (t=5.950), longer axial length (AL) (t=14.989), higher proportion of DME grade 3 (Z=6.284), higher proportion of DEX implantation in pars plana (χ2=23.275), and higher HbA1c level (t=10.764), the differences were statistically significant (P<0.05). Logistic regression analysis showed that longer AL [odds ratio (OR)=1.428, 95% confidence interval (CI) 1.054-1.934], DEX implantation in pars plana (OR=1.358, 95%CI 1.063-1.735), and higher HbA1c (OR=1.702, 95%CI 1.225-2.366) were the risk factors for secondary intraocular hypertension in DME patients after DEX treatment (P<0.05), older age was a protective factor (OR=0.548, 95%CI 0.380-0.789, P<0.05). ConclusionsLong AL, DEX implantation in pars plana and high HbA1c are the risk factors for secondary intraocular hypertension after DEX treatment in DME patients, older age is a protective factor.
Objcetive To assess the efficacy and safety of lenalidomide plus dexamethasone (LD) compared with placebo plus dexamethasone (PD) for relapsed or refractory multiple myeloma. Methods Data were searched in The Cochrane Library (Issue 3, 2010), MEDLINE (with PubMed, 1966 to Nov. 2010), EMbase (1984 to Nov. 2010), CBMdisc (1978 to Nov. 2010), and CNKI (1979 to Nov. 2010), and also searched in clinical trials register for ongoing studies and completed studies with unpublished data. The references of the included studies and relevant supplement or conference abstracts were handsearched. Randomized controlled trials were included. The data were extracted, and then the quality of the included studies was assessed by two reviewers independently. RevMan 5.0 software was used for meta-analyses for studies with low heterogeneity. Results Two studies involving 704 participants were included. One was high quality study, while the other was unclear about randomization and allocation concealment. The adverse outcomes of LD, such as mortality (RR=0.78, 95%CI 0.62 to 0.97, P=0.03) and incidence of disease progression (RR=0.16, 95%CI 0.08 to 0.34, Plt;0.000 01), were better than those of PD, which had significant differences. The overall response rate was higher in the LD group than in the PD group (RR=2.75, 95%CI 2.22 to 3.41, Plt;0.000 01). The incidence of thrombotic event (RR=3.20, 95%CI 1.78 to 5.73, Plt;0.000 1), the Grade Three and Grade Four neutropenia (RR=10.20, 95%CI 5.76 to 18.08, Plt;0.000 01), the Grade Three and Grade Four thrombocytopenia (RR=2.08, 95%CI 1.28 to 3.38, P=0.003), and the incidence of drug withdrawal or dosage reduction due to adverse reactions (RR=1.34, 95%CI 1.21 to 1.49, Plt;0.000 01) were all higher in the LD group than in the PD group. Conclusion The efficacy of LD is superior to that of PD for relapsed or refractory multiple myeloma, but the incidence of drug adverse events, such as thrombosis, Grade Three or Grader Four neutropenia or thrombocytopenia, is also higher than that of PD, which has to be prevented positively.
ObjectiveTo observe the short-term efficacy and safety of a new strategy of dexamethasone intravitreal implant (DEX) combined with ranibizumab in the treatment of retinal vein occlusion (RVO) secondary to macular edema (ME) (RVO-ME). MethodsA prospective clinical interventional study. From May 2020 to September 2021, 78 RVO-ME patients with 78 eyes diagnosed in the eye examination of Department of Ophthalmology of The First Affiliated Hospital of Anhui University of Science&Technology were included in the study. Among them, there were 35 males and 43 females, all with monocular disease. Branch retinal vein occlusion (BRVO) was found in 40 patients with 40 eyes; central retinal vein occlusion (CRVO) was found in 38 patients with 38 eyes. According to the treatment strategies, patients were randomly divided into DEX and ranibizumab combination therapy group (initial combination therapy group), DEX monotherapy group and ranibizumab monotherapy group, with 29 eyes, 26 eyes and 23 eyes respectively. Different types of RVO were divided into different treatment groups of BRVO and CRVO. Best corrected visual acuity (BCVA) and frequency domain optical coherence tomography were performed. The BCVA examination was carried out using the international standard visual acuity chart, which was converted into the logarithmic minimum angle of resolution (logMAR) visual acuity during statistics. There were no significant differences in logMAR BCVA (χ2=2.376) and central retinal thickness (CRT) (F=0.052) among the three groups (P>0.05). After treatment, the patients were followed up every month for 6 months. The changes of BCVA, CRT and the incidence of adverse reactions were observed during follow-up. One-way ANOVA and Kruskal-Wallis H test were used to compare the differences. ResultsDuring the follow-up period, compared with the baseline, the BCVA of the eyes in the initial combination treatment group, DEX treatment group and ranibizumab treatment group were significantly improved (Z=110.970, 90.359, 207.303), and CRT was significantly decreased (F=107.172, 88.418, 61.040), the difference was statistically significant (P<0.01). At 1, 2, 3, 4, 5, and 6 months after treatment, there were significant differences in the mean changes in BCVA between the initial combined treatment group, DEX treatment group, and ranibizumab treatment group (χ2=34.522, 29.570, 14.199, 7.000, 6.434, 6.880; P<0.05); 1, 2, 3, and 6 months after treatment, the differences were statistically significant (F=4.313, 7.520, 3.699, 3.152; P<0.05). The time required to improve BCVA by 0.1 logMAR units in the initial combination treatment group, DEX treatment group, and ranibizumab treatment group was 5.73 (3.21, 8.48), 9.97 (6.29, 18.78), and 20.00 (9.41, 37.89) d, respectively; The time required for CRT to drop to 300 μm was 24.31 (21.32, 26.15), 29.42 (25.65, 31.37), and 29.17 (25.28, 36.94) d, respectively. The BCVA improvement of 0.1 logMAR unit and the time required for CRT to decrease to 300 μm in the eyes of initial combined treatment group were shorter than those in the eyes of DEX treatment group and the ranibizumab treatment group, and the differences were statistically significant (Z=-3.533, -4.445, -3.670, -4.030; P<0.01). Different BRVO treatment groups: 1, 2, 3, 5, and 6 months after treatment, the mean BCVA changes were significantly different (χ2=24.989, 21.652, 11.627, 7.054, 9.698; P<0.05); CRVO was different treatment group: 1 and 2 months after treatment, there were significant differences in mean BCVA changes (χ2=11.137, 9.746; P<0.05). Two months after treatment, there were significant differences in CRT changes between BRVO and CRVO groups with different treatment regimens (F=3.960, 3.722; P<0.01). The time required to improve BCVA by 0.1 logMAR unit in the eyes of BRVO and CRVO combined treatment group was shorter than that in the eyes of BRVO, CRVO DEX treatment group and the BRVO, CRVO ranibizumab treatment group, and the differences were statistically significant (BRVO: Z=-2.687, -3.877; P<0.05; CRVO: Z=-2.437, -3.575; P<0.05). The time required for CRT to drop to 300 μm in the CRVO combined treatment group was significantly shorter than that in the CRVO DEX treatment group and the CRVO ranibizumab treatment group, and the difference was statistically significant (F=6.910, P<0.010); there was no statistically significant difference between the different BRVO treatment groups (F=1.786, P>0.05). The number of re-treated eyes in the initial combined treatment group and DEX treatment group was less than that in the ranibizumab treatment group, and the difference was statistically significant (χ2=18.330, 7.224; P<0.05). The retreatment interval of the eyes in the initial combined treatment group was significantly longer than that in the DEX treatment group and the ranibizumab treatment group, and the difference was statistically significant (P<0.01). There was no significant difference in the incidence of intraocular hypertension among the initial combined treatment group, DEX treatment group and ranibizumab treatment group (χ2=0.058, P>0.05). ConclusionsThe new strategy of initial combination therapy with DEX and ranibizumab in the treatment of RVO-ME has a better short-term effect. Compared with the monotherapy group, the retreatment interval is shorter, the visual and anatomical benefits are faster, the efficacy lasts longer, and the safety is better.
ObjectiveTo observe the effects of bulbar subconjunctival and periocular injection of dexamethasonone on blood glucose levels of type 1 diabetic mellitus (T1DM)rats. Methods80 healthy adult male Sprague-Dawley rats were randomly divided into GroupⅠ(n=40) and GroupⅡ(n=40). GroupⅠrats received intraperitoneal (IP) injection of streptozotocin to induce T1DM model, while GroupⅡrats received IP injection of citrate buffer solution and was the control group.GroupⅠrats and GroupⅡrats were further divided into four subgroups:A (n=10), a (n=10), B (n=10), and b (n=10). Subgroup-A rats received bulbar subconjunctival injection of dexamethasone, subgroup-a rats received bulbar subconjunctival injection of saline, subgroup-B rats received periocular injection of dexamethasone, subgroup-b rats received periocular injection of saline. After the injection, rats were fasted but could drink water. Tail vein blood samples were collected and the blood glucose level was measured by glucose monitor. ResultsAfter modeling, the blood glucose level of GroupⅠand GroupⅡrats was(9.31±1.79) mmol/L and (5.72±0.80) mmol/L respectively, the difference was statistically significant (P < 0.05). The blood glucose level of GroupⅠrats reached the peak in 3h after injection. In 6-24 h after injection, the blood glucose level of GroupⅠA rats was obviously increased than that of the blood glucose level of Group Ia rats and the difference was statistically significant (P < 0.05). In 3-24 hours after injection, the blood glucose level of GroupⅠB rats was obviously increased than that of the blood glucose level of GroupⅠb rats and the difference was statistically significant (P < 0.05). Comparing the blood glucose level during different injection time between GroupⅠA rats and GroupⅠB rats, between GroupⅠa rats and GroupⅠb rats, the difference was not statistically significant (P > 0.05). In 3-24 hours after injection, the blood glucose level of GroupⅡA rats was obviously increased than that of the blood glucose level of GroupⅡa rats and the difference was statistically significant (P < 0.05); the blood glucose level of GroupⅡB rats was obviously increased than that of the blood glucose level of GroupⅡb rats and the difference was statistically significant (P < 0.05). Comparing the blood glucose level during different injection time between GroupⅡA rats and GroupⅡB rats, between GroupⅡa rats and GroupⅡb rats, the difference was not statistically significant (P > 0.05). ConclusionBulbar subconjunctival injection and periocular injection of dexamethasone could both increase the blood glucose of TIDM rats, but these two injection methods had no differences on the blood glucose level.
ObjectiveTo systematically review the efficacy and safety of dexamethasone in the treatment of viral myocarditis.MethodsThe Cochrane Library, PubMed, EMbase, Biosis Preview, Web of Science, CBM, WanFang Data, VIP, and CNKI databases were electronically searched to collect randomized controlled trials (RCTs) on dexamethasone for patients with viral myocarditis from inception to April 30th, 2021. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of the included studies. Meta-analysis was then performed using RevMan 5.4 software.ResultsA total of 7 RCTs involving 749 patients were included. The results of meta-analysis showed that the dexamethasone treatment group exhibited an increased efficacy rate (RR=1.26, 95%CI 1.18 to 1.34, P<0.000 01), decreased levels of C-reactive protein (CRP) (MD=?11.49, 95%CI ?19.25 to ?3.72, P=0.004), cardiac troponin I (cTnI) (MD=?26.14, 95%CI ?40.82 to ?11.47, P=0.0005), and creatine kinase MB (CK-MB) (MD=?20.06, 95%CI ?28.35 to ?11.77, P<0.000 01), and a decreased adverse event rate (RR=0.40, 95%CI 0.24 to 0.65, P=0.000 3).ConclusionsCurrent evidence shows that dexamethasone can significantly improve the efficacy rate, reduce the levels of CRP, cTnI, and CK-MB, and reduce the incidence of adverse events in patients with viral myocarditis. Due to the limited quantity and quality of included studies, more high-quality studies are required to verify above conclusions.
Diabetic macular edema (DME) is the most threatening complication of diabetic retinopathy that affects visual function, which is characterized by intractability and recurrent attacks. Currently, the clinical routine treatments for DME mainly include intravitreal injection, grid laser photocoagulation in the macular area, subthreshold micropulse laser, periocular corticosteroid injection, and vitrectomy. Although conventional treatments are effective for some patients, persistent, refractory, and recurrent DME remains a clinical challenge that needs to be urgently addressed. In recent years, clinical studies have found that certain combination therapies are superior to monotherapy, which can not only restore the anatomical structure of the macular area and effectively reduce macular edema but also improve visual function to some extent while reducing the number of treatments and the overall cost. This makes up for the shortcomings of single treatment modalities and is highly anticipated in the clinical setting. However, the application of combination therapy in clinical practice is relatively short, and its safety and long-term effectiveness need further exploration. Currently, new drugs, new formulations, and new therapeutic targets are still under research and development to address different mechanisms of DME occurrence and development, such as anti-vascular endothelial growth factor agents designed to anchor repetitive sequence proteins with stronger inhibition of vascular leakage, multiple growth factor inhibitors, anti-inflammatory agents, and stem cell therapy. With the continuous improvement of the combination application of existing drugs and treatments and the development of new drugs and treatment technologies, personalized treatment for DME will become possible.
Objective To investigate the role of IFN-γ in suppressing bleomycin-induced pulmonary fibrosis in rats.Methods Seventy-five SD rats were randomly divided into five groups (15 rats in each group),ie.a normal group,a bleomycin-induced pulmonary fibrosis model group,a dexamethasone-treated group,a high-dose IFN-γ-treated group (150 000 U/kg) and a low-dose IFN-γ-treated group (50 000 U/kg).Five rats in each group were randomly killed in 7th day,14th day and 28th day after relative treatment respectively,and lung tissue samples were harvested for histopathology study.HE and Masson staining were used to determine the extent of alveolus inflammation and pulmonary fibrosis respectively.Histoimmunochemical method were adapted to determine protein levels of TGF-β1,CTGF,type Ⅰcollagen and type Ⅲ collagen in pulmonary tissues.Results Histopathological study showed that treatment with either dexamethasone or IFN-γ (both high dose and low dose) remarkably meliorated the extent of alveolus inflammation and suppressed pulmonary fibrosis (compared with model group,all Plt;0.05).Histoimmunochemical study suggested that both dexamethasone and IFN-γ could inhibit the expression of TGF-β1,CTGF,type Ⅰand type Ⅲ collagen (compared with model group,all Plt;0.05),and the suppression of TGF-β1,type Ⅰand type Ⅲ collagen expression was more obvious in high-dose IFN-γ-treated group than those in low-dose group (Plt;0.05).Conclusions INF-γ possesses apparent anti-fibrosis effect that is similar to dexamethasone but with less side effect.Such effect may resulted from reduced production of type Ⅰand type Ⅲ collagen through expression inhibition of cytokines such as TGF-β1 and CTGF.
In 2019, the American Wilderness Medical Society updated and released a new version of the practice guidelines based on the practice guidelines for the prevention and treatment of acute altitude illness first published in 2010 and updated in 2014. This article interprets the guidelines, focusing on effective measures to prevent and treat different forms of acute altitude illness, as well as suggestions for specific methods to manage the disease, with a view to providing help for clinicians in better practice.
Objective Corticosteroids can destroy the cartilage. To investigate the effect of dexamethasone (Dexa) on the apoptosis and expression of Fas/FasL of human articular chondrocytes (HACs) in vitro so as to explore the mechanism ofpro-apoptotic role of Dexa on HACs. Methods Following full agreement of patients, the cartilage specimens were collectedfrom the patients with osteoarthritis undergoing knee replacement. The second passage HACs were incubated in cell culture media containing 0.125, 1.25, 12.5, 25, and 50 μg/mL Dexa for 48 hours respectively to determine the optimal concentration of Dexa by MTT. The apoptosis was assessed by TMRE/Hoechst/Annexin V-FITC/7-AAD quadruple staining after culture for 0, 24, and 48 hours. The mRNA expressions of Fas and FasL were determined by real-time quantitative PCR after culture for 48 hours. The protein expressions of Fas and FasL were determined by immunohistochemistry staining analysis after culture for 24 hours and 48 hours. Results The cell inhibitory rate of 25 μg/mL Dexa was significantly higher than that of 50 μg/mL Dexa (P lt; 0.05), and there were significant differences when compared with that at other concentrations of Dexa (P lt; 0.05), so 25 μg/mL Dexa was appropriately selected as an optimal concentration of Dexa. The apoptotic rates of HACs were 5.8% ± 0.3%, 27.0% ± 2.6%, and 36.0% ± 3.1% at 0, 24, and 48 hours, respectively, in a time dependent manner (P lt; 0.05). The expressions of Fas mRNA were (8.93 ± 1.12) × 10—3 in the experimental group and (3.31 ± 0.37) × 10—3 in the control group, showing significant difference (P lt; 0.05). The expressions of FasL mRNA were (5.92 ± 0.66) × 10—3 in the experimental group and (2.31 ± 0.35) × 10—3in the control group, showing significant difference (P lt; 0.05). The expressions of Fas and FasL proteins showed an increasing tendency with time in the experimental group and the expressions were significantly higher than those in the control group after culture for 24 hours and 48 hours (P lt; 0.05). Conclusion Dexa can induce the apoptosis and significantly upregulate the apoptotic gene expression of Fas/FasL, which can provide the experimental evidence to further investigate the role of Fas/FasL signaling pathway in Dexa-induced HACs apoptosis.