• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Cartilage tissue engineering" 28 results
        • Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering

          ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.

          Release date:2022-05-07 02:02 Export PDF Favorites Scan
        • Construction of tissue engineered cartilage based on acellular cartilage extracellular matrix oriented scaffold and chondrocytes

          ObjectiveTo observe the feasibility of acellular cartilage extracellular matrix (ACECM) oriented scaffold combined with chondrocytes to construct tissue engineered cartilage.MethodsChondrocytes from the healthy articular cartilage tissue of pig were isolated, cultured, and passaged. The 3rd passage chondrocytes were labeled by PKH26. After MTT demonstrated that PKH26 had no influence on the biological activity of chondrocytes, labeled and unlabeled chondrocytes were seeded on ACECM oriented scaffold and cultivated. The adhesion, growth, and distribution were evaluated by gross observation, inverted microscope, and fluorescence microscope. Scanning electron microscope was used to observe the cellular morphology after cultivation for 3 days. Type Ⅱ collagen immunofluorescent staining was used to check the secretion of extracellular matrix. In addition, the complex of labeled chondrocytes and ACECM oriented scaffold (cell-scaffold complex) was transplanted into the subcutaneous tissue of nude mouse. After transplantation, general physical conditions of nude mouse were observed, and the growth of cell-scaffold complex was observed by molecular fluorescent living imaging system. After 4 weeks, the neotissue was harvested to analyze the properties of articular cartilage tissue by gross morphology and histological staining (Safranin O staining, toluidine blue staining, and typeⅡcollagen immunohistochemical staining).ResultsAfter chondrocytes that were mainly polygon and cobblestone like shape were seeded and cultured on ACECM oriented scaffold for 7 days, the neotissue was translucency and tenacious and cells grew along the oriented scaffold well by inverted microscope and fluorescence microscope. In the subcutaneous microenvironment, the cell-scaffold complex was cartilage-like tissue and abundant cartilage extracellular matrix (typeⅡcollagen) was observed by histological staining and typeⅡcollagen immunohistochemical staining.ConclusionACECM oriented scaffold is benefit to the cell adhesion, proliferation, and oriented growth and successfully constructes the tissue engineered cartilage in nude mouse model, which demonstrates that the ACECM oriented scaffold is promise to be applied in cartilage tissue engineering.

          Release date:2018-03-07 04:35 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON DIFFERENTIATION OF RAT BMSCs TO CHONDROCYTES TRANSFECTED BYTGF-β1 AND IGF-I GENE ALONE AND TOGETHER

          【Abstract】 Objective To investigate the secretion of target gene and differentiation of BMSCs transfected by TGF-β1 and IGF-1 gene alone and together into chondrocytes and to provide a new method for culturing seed cells in cartilage tissue engineering. Methods The plasmids pcDNA3.1-IGF-1 and pcDNA3.1-TGF-β1 were ampl ified and extracted, then cut by enzymes, electrophoresed and analyzed its sequence. BMSCs of Wistar rats were separated and purificated by the density gradient centrifugation and adherent separation. The morphologic changes of primary and passaged cells were observed by inverted phase contrast microscope and cell surface markers were detected by immunofluorescence method. According to the transfect situation, the BMSCs were divided into 5 groups, the non-transfected group (Group A), the group transfected by empty vector (Group B), the group transfected by TGF-β1 (Group C), the group transfected by IGF-1 (Group D) and the group transfected both by TGF-β1 and IGF-1 (Group E). After being transfected, the cells were selected, then the prol iferation activity was tested by MTT and expression levels were tested by RT-PCR and Western blot. Results The result of electrophoresis showedthat sequence of two bands of the target genes, IGF-1 and TGF-β1, was identical with the sequence of GeneBank cDNA. A few adherent cells appeared after 24 hours culture, typical cluster formed on the forth or fifth days, and 80%-90% of the cells fused with each other on the ninth or tenth days. The morphology of the cells became similar after passaging. The immunofluorescence method showed that BMSCs were positive for CD29 and CD44, but negative for CD34 and CD45. A few cells died after 24 hoursof transfection, cell clone formed at 3 weeks after selection, and the cells could be passaged at the forth week, most cells became polygonal. The boundary of some cells was obscure. The cells were round and their nucleus were asymmetry with the particles which were around the nucleus obviously. The absorbency values of the cells tested by MTT at the wavelength of 490 nm were0.432 ± 0.038 in group A, 0.428 ± 0.041 in group B, 0.664 ± 0.086 in group C, 0.655 ± 0.045 in group D and 0.833 ± 0.103 in group E. The differences between groups A, B and groups C, D, E were significant (P lt; 0.01). The differences between groups A and B or between C, D and E were not significant (P gt; 0.05)。RT-PCR and Western blot was served to detect the expression of the target gene and protein. TGF-β1 was the highest in group C, 0.925 0 ± 0.022 0, 124.341 7 ± 2.982 0, followed by group E, 0.771 7 ± 0.012 0, 101.766 7 ± 1.241 0(P lt; 0.01); The expression of IGF-1 was the highest in group E, 1.020 0 ± 0.026 0, 128.171 7 ± 9.152 0, followed by group D, 0.465 0 ± 0.042 0, 111.045 0 ± 6.248 0 (P lt; 0.01). And the expression of collagen II was the hignest in group E, 0.980 0 ± 0.034 0, 120.355 0 ± 12.550 0, followed by group C, 0.720 0 ± 0.026 0, 72.246 7 ± 7.364 0(P lt; 0.01). Conclusion The repairment of cartilage defects by BMSCs transfected with TGF-β1 and IGF-1 gene together hasa good prospect and important significance of cl inic appl ication in cartilage tissue engineering.

          Release date:2016-09-01 09:09 Export PDF Favorites Scan
        • Effect of indianhedgehog gene transfection into rabbit bone marrow mesenchymal stem cells in promoting chondrogenic differentiation and inhibiting cartilage aging in rotary cell culture system

          ObjectiveTo investigate the effect of overexpressing the Indianhedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) in a simulated microgravity environment. MethodsThe 2nd generation BMSCs from rabbit were divided into 2 groups: the rotary cell culture system (RCCS) group and conventional group. Each group was further divided into the IHH gene transfection group (RCCS 1 group and conventional 1 group), green fluorescent protein transfection group (RCCS 2 group and conventional 2 group), and blank control group (RCCS 3 group and conventional 3 group). RCCS group cells were induced to differentiate into chondrocytes under simulated microgravity environment; the conventional group cells were given routine culture and chondrogenic induction in 6 well plates. During differentiation induction, the ELISA method was used to detect IHH protein expression and alkaline phosphatase (ALP) activity, and quantitative real-time PCR to detect cartilage and cartilage hypertrophy related gene expressions, and Western blot to detect collagen typeⅡ, agreecan (ANCN) protein expression; and methylene blue staining and Annexin V-cy3 immunofluorescence staining were used to observe cell slide. ResultsAfter transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in RCCS groups 1 and 2, the transfection efficiency was about 95%. The IHH protein levels of RCCS 1 group and conventional 1 group were significantly higher than those of RCCS 2, 3 groups and conventional 2, 3 groups (P < 0.05); at each time point, ALP activity of conventional 1 group was significantly higher than that of conventional 2, 3 groups (P < 0.05); ALP activity of RCCS 1 group was significantly higher than that of RCCS 2 and 3 groups only at 3 and 7 days (P < 0.05). Conventional 1 group expressed high levels of cartilage-related genes, such as collagen typeⅡand ANCN at the early stage of differentiation induction, and expressed high levels of cartilage hypertrophy-related genes, such as collagen type X, ALP, and Annexin V at the late stage (P < 0.05). RCCS 1 group expressed high levels of cartilage-related genes and low levels of cartilage hypertrophy-related genes at all stages. The expression of collagen typeⅡprotein in conventional 1 group was significantly lower than that of conventional 2 and 3 groups at 21 days after induction (P < 0.05); RCCS 1 group expressed high levels of collagen typeⅡand ANCN proteins at all stages (P < 0.05). Methylene blue staining indicated conventional 1 group was stained lighter than conventional 2 and 3 groups at 21 days after induction; while at each time point RCCS 1 group was significantly deeper than RCCS 2 and 3 groups. Annexin V-cy3 immunofluorescence staining indicated the red fluorescence of conventional 1 group was stronger than that of conventional 2 and 3 groups at each time point. The expression of red fluorescence in each RCCS subgroup was weak and there was no significant difference between the subgroups. ConclusionUnder the simulated microgravity environment, transfection of IHH gene into BMSCs can effectively promote the generation of cartilage and inhibit cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

          Release date: Export PDF Favorites Scan
        • CHONDROGENESIS OF BONE MARROW MESENCHYMAL STEM CELLS INDUCED BY TRANSFORMING GROWTH FACTOR β3 GENE IN DIANNAN SMALL-EAR PIGS

          ObjectiveTo observe transforming growth factor β3 (TGF-β3) gene expression and the chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) after TGF-β3 gene is transfected into BMSCs of Diannan small-ear pig. MethodsRecombinant adenovirus 5 (rAd5) was extracted as gene vector and packed into recombinant adenovirus rAd5-TGF-β3, double enzyme digestion and PCR identification were performed. BMSCs were isolated and cultured from bone marrow of 2-month-old Diannan small-ear pigs (weighing, 12-15 kg), and the 2nd generation of BMSCs were harvested for experiments. The experiments were divided into 3 groups. BMSCs were transfected with rAd5-TGF-β3 as experimental group and with empty vector as control group, and non-transfected BMSCs were used as blank control group. The transfection efficiency of exogenous gene was identified by flow cytometry, TGF-β3 protein expression by immunofluorescence and Western blot. The cell morphology of experimental group was observed by inverted phase contrast microscope, and the expression of collagen type II in each group was detected by Western blot. ResultsThe rAd5-TGF-β3 recombinant adenovirus was successfully constructed and transfected into BMSCs. Green fluorescence was observed by immunofluorescence microscope. Flow cytometry test showed the best transfection at 72 hours (transfection efficiency of 84.86%). Immunofluorescence staining showed that the expression of TGF-β3 protein was obvious at 72 hours; Western blot showed that there was a TGF-β3 positive band with a relative molecular mass of 30×103, while the control group and blank control group had no positive band. Obvious chondrogenic differentiation was observed in the experimental group after transfection in vitro, while the control group and blank control group had no obvious chondrogenic differentiation. Western blot showed that there was collagen type II positive band with a relative molecular mass of 130×103 at 21 days after culture, while the control group and blank control group had no positive band. ConclusionrAd5-TGF-β3 gene can be successfully transfected into BMSCs via adenovirus vectors, and stable expression of TGF-β3 protein can be observed, enhancing BMSCs differentiation into chondrocytes, which may provide an experimental basis for gene therapy of joint cartilage defects.

          Release date: Export PDF Favorites Scan
        • PROGRESS OF METHODS OF INDUCING BONE MARROW MESENCHYMAL STEM CELLS INTO CHONDROCYTES IN VITRO

          Objective To review the research progress of the current methods of inducing bone marrow mesenchymal stem cells (BMSCs) to chondrogenic differentiation in vitro so as to provide references for researches in cartilage tissue engineering. Methods Various methods of inducing BMSCs differentiation into the chondrogenic l ineage in vitro inrecent years were extensively reviewed and analyzed. Results Adding exogenous growth factors is still the mainly methodof inducing BMSCs differentiation into the chondrogenic l ineage; among the members, transforming growth factor β (TGF-β) family is recognized as the most important chondrogenic induction factor. Other important inducing factors include various chemical factors, physical factors, transgenic methods, and the microenvironmental induction. But the problems of low inducing efficiency and unstable inducing effects still exist. Conclusion The progress of chondrogenic induction of BMSCs promotes its util ization in cartilage tissue engineering. Further researches are needed for establ ishing more efficient, simpler, and safer inducing methods.

          Release date:2016-08-31 05:44 Export PDF Favorites Scan
        • Application of electrospinning for cartilage repair

          Cartilage with limited self-repairing ability is a kind of tissue with relatively hypocellular structure, low nerve distribution and vascular nutrient. Cartilage tissue engineering provides a new therapeutic idea for cartilage injured cartilage repairing in clinical practice. Electrospinning fibrous scaffold with three-dimensional structure like extracellular matrix is suitable for cell growth and bioactive factor loading for cartilage tissue engineering. This paper introduces studies of the application of electrospinning technology in repairing damaged cartilage by simulating highly hierarchical structures and mechanical features from the aspects of composition optimization, structure optimization and multi-technology combination.

          Release date:2023-10-24 03:04 Export PDF Favorites Scan
        • EFFECT OF BASIC FIBROBLAST GROWTH FACTOR AND PARATHYROID HORMONE-RELATED PROTEIN ON EARLY AND LATE CHONDROGENIC DIFFERENTIATION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS INDUCED BY TRANSFORMING GROWTH FACTOR β1

          Objective To explore the impact of basic fibroblast growth factor (bFGF) and parathyroid hormone-related protein (PTHrP) on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) induced by transforming growth factor β1 (TGF-β1). Methods BMSCs were isolated from 3 healthy Japanese rabbits (2-month-old, weighing 1.6-2.1 kg, male or female), and were clutured to passage 3. The cells were put into pellet culture system and were divided into 5 groups according to different induce conditions: TGF-β1 group (group A), TGF-β1/bFGF group (group B), TGF-β1/21 days bFGF group (group C), TGF-β1/PTHrP group (group D), and TGF-β1/21 days PTHrP group (group E). At the beginning, TGF-β1 (10 ng/mL) was added to all groups, then bFGF and PTHrP (10 ng/mL) were added to groups B and D respectively; bFGF and PTHrP (10 ng/mL) were added to groups C and E at 21 days respectively. The gene expressions of collagen type I (Col I), Col II, Col X, matrix metalloproteinases (MMP)-13, and alkaline phosphatase (ALP) activity were detected once every week for 6 weeks. The 1, 9-dimethylmethylene blue (DMMB) staining was used to observe the extracellular matrix secretion at 6 weeks. Results The expression of Col I in groups C and E showed a significant downward trend after 3 weeks; the expression in group A was significantly higher than that in groups C and E at 4 and 5 weeks (P lt; 0.05), and than that in groups B and D at 3-6 weeks (P lt; 0.05); and significant differences were found between groups B and C at 3 and 4 weeks, and between groups D and E at 3 weeks (P lt; 0.05). After 3 weeks, the expressions of Col II and Col X in groups C and E gradually decreased, and were significantly lower than those in group A at 4-6 weeks (P lt; 0.05). Groups B and D showed no significant difference in the expressions of Col II and Col X at all time points, but there was significant difference when compared with group A (P lt; 0.05). MMP-13 had no obvious expression at all time points in group A; significant differences were found between group B and groups A, C at 3 weeks (P lt; 0.05); and the expression was significantly higher in group D than in groups A and E (P lt; 0.05). ALP activity gradually increased with time in group A; after 4 weeks, ALP activity in groups C and E obviously decreased, and was significantly lower than that in group A (P lt; 0.05); there were significant differences between groups B and C, and between groups D and E at 2 and 3 weeks (P lt; 0.05). DMMB staining showed more cartilage lacuna in group A than in the other groups at 6 weeks. Conclusion bFGF and PTHrP can inhibit early and late chondrogenic differentiation of BMSCs by changing synthesis and decomposition of the cartilage extracellular matrix. The inhibition is not only by suppressing Col X expression, but also possibly by suppressing other chondrogenic protein.

          Release date:2016-08-31 04:06 Export PDF Favorites Scan
        • Effect of xanthohumol-loaded anti-inflammatory scaffolds on cartilage regeneration in goats

          ObjectiveTo develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats. Methods The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds. Results The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity (P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold (P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds (P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds (P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds (P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds (P<0.05). ConclusionThe drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.

          Release date:2022-11-02 10:05 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON COLLAGEN HYDROGEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

          Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.

          Release date:2016-08-31 04:22 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜