• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Cartilage" 84 results
        • Research progress of different cell seeding densities and cell ratios in cartilage tissue engineering

          ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.

          Release date:2022-05-07 02:02 Export PDF Favorites Scan
        • THE EXPERIMENTAL STUDY ON OPTIMAL CELL DENSITY AND FORMATION TIME OF TISSUE ENGINEERED AUTOLOGOUS CARTILAGE

          OBJECTIVE This paper aims to investigate the suitable cell density and the best formation time of tissue engineered autologous cartilage and to provide theoretical basis and parameters for clinical application. METHODS The chondrocytes isolated from mini swines’ ears were mixed with injectable biocompatible matrix (Pluronic), and the density of cell suspensions were 10, 20, 30, 40, 50, 60, 70 x 10(4)/ml. The chondrocyte-polymer constructs were subcutaneously injected into the abdomen of autologous swine. The specimens were observed grossly and histologically after 6 weeks, and investigated the suitable cell density. Then the chondrocyte-polymer constructs with suitable cell density were transplanted into the abdomen of autologous swine and evaluated grossly and histologically in 1, 3, 6, 9, 15 weeks after transplantation to investigate the best formation time of tissue engineered cartilage. RESULTS The experiments demonstrated that the tissue engineered autologous cartilage was similar to the natural cartilage on animals with normal immune system in histological characteristics. The optimal chondrocyte density is 50 x 10(6)/ml, and the proper harvest time is the sixth week. CONCLUSION With tissue engineering skills, we have identified the optimal chondrocyte density and the proper harvest time.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • Construction of tissue engineered cartilage based on acellular cartilage extracellular matrix oriented scaffold and chondrocytes

          ObjectiveTo observe the feasibility of acellular cartilage extracellular matrix (ACECM) oriented scaffold combined with chondrocytes to construct tissue engineered cartilage.MethodsChondrocytes from the healthy articular cartilage tissue of pig were isolated, cultured, and passaged. The 3rd passage chondrocytes were labeled by PKH26. After MTT demonstrated that PKH26 had no influence on the biological activity of chondrocytes, labeled and unlabeled chondrocytes were seeded on ACECM oriented scaffold and cultivated. The adhesion, growth, and distribution were evaluated by gross observation, inverted microscope, and fluorescence microscope. Scanning electron microscope was used to observe the cellular morphology after cultivation for 3 days. Type Ⅱ collagen immunofluorescent staining was used to check the secretion of extracellular matrix. In addition, the complex of labeled chondrocytes and ACECM oriented scaffold (cell-scaffold complex) was transplanted into the subcutaneous tissue of nude mouse. After transplantation, general physical conditions of nude mouse were observed, and the growth of cell-scaffold complex was observed by molecular fluorescent living imaging system. After 4 weeks, the neotissue was harvested to analyze the properties of articular cartilage tissue by gross morphology and histological staining (Safranin O staining, toluidine blue staining, and typeⅡcollagen immunohistochemical staining).ResultsAfter chondrocytes that were mainly polygon and cobblestone like shape were seeded and cultured on ACECM oriented scaffold for 7 days, the neotissue was translucency and tenacious and cells grew along the oriented scaffold well by inverted microscope and fluorescence microscope. In the subcutaneous microenvironment, the cell-scaffold complex was cartilage-like tissue and abundant cartilage extracellular matrix (typeⅡcollagen) was observed by histological staining and typeⅡcollagen immunohistochemical staining.ConclusionACECM oriented scaffold is benefit to the cell adhesion, proliferation, and oriented growth and successfully constructes the tissue engineered cartilage in nude mouse model, which demonstrates that the ACECM oriented scaffold is promise to be applied in cartilage tissue engineering.

          Release date:2018-03-07 04:35 Export PDF Favorites Scan
        • Effect of autotaxin-lysophosphatidic acid pathway on matrix metalloproteinase-13 in articular cartilage of knee osteoarthritis in rats

          ObjectiveTo investigate the effect of inhibiting autotaxin (ATX)-lysophosphatidic acid (LPA) pathway on the cartilage of knee osteoarthritis in rats.MethodsPrimary chondrocytes within three generations of Sprague-Dawley rats (8 weeks old, male) were randomly divided into 6 groups, including blank control group, model group, 1 μmol/L PF-8380 group, 10 μmol/L PF-8380 group, 1 μmol/L Ki16425 group, and 10 μmol/L Ki16425 group. Except for the blank control group, the other groups were modeled with osteoarthritis using interleukin-1β (10 ng/mL, 24 h), and then the experimental groups, i.e., 1 μmol/L PF-8380 group, 10 μmol/L PF-8380 group, 1 μmol/L Ki16425 group, and 10 μmol/L Ki16425 group, were intervened with 1, 10 μmol/L PF-8380 (ATX inhibitor) and 1, 10 μmol/L Ki16425 (LPA receptor antagonist) for 24 h, respectively. immunocytochemistry staining was used to determine the expression of type Ⅱ collagen (Col Ⅱ) in cytoplasm, and Western Blot was used to determine the expression of ATX, LPA, and matrix metalloproteinase-13 (MMP-13) in chondrocytes.ResultsCompared with the blank control group, the average absorbance of Col Ⅱ in chondrocytes in the model group was significantly reduced (0.003 9±0.000 8 vs. 0.110 0± 0.009 0, P<0.05). The expression levels of ATX, LPA, and MMP-13 in chondrocytes in the model group, 1 μmol/L PF-8380 group, 10 μmol/L PF-8380 group, and 1 μmol/L Ki16425 group were significantly higher than those in the blank control group, while the expression levels of ATX, LPA, and MMP-13 in the 10 μmol/L Ki16425 group had no significant difference with those in the blank control group; the expression levels of ATX, LPA, and MMP-13 in the model group, 10 μmol/L PF-8380 group, and 1 μmol/L PF-8380 group decreased in order; the expression levels of ATX, LPA, and MMP-13 in the model group, 1 μmol/L Ki16425 group, and 10 μmol/L Ki16425 group decreased in order.ConclusionInhibiting ATX-LPA pathway may inhibit the up-regulation of MMP-13 levels in articular cartilage of osteoarthritis in rats to reduce the damage of cartilage.

          Release date:2020-06-25 07:43 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF CONTROLLED RELEASING DELIVERY OF BIOLOGICAL FACTORS FOR CARTILAGE REPAIR

          ObjectiveTo summarize the recent progress of the controlled releasing delivery of biological factors for cartilage repair. MethodsThe recently published 1iterature at home and abroad on the controlled releasing delivery of biological factors for cartilage repair was reviewed and summarized. ResultsVarious biological factors have been applied for repairing cartilage. For better cartilage repair effects, controlled releasing delivery of biological factors can be applied by means of combining biological factors with degradable biomaterials, or by micro- and nano-particles. Meanwhile, multiple biologic delivery and temporally controlled delivery are also inevitable choices. ConclusionAlthough lots of unsolved problems exist, the controlled releasing delivery of biological factors has been a research focus for cartilage repair because of the controllability and delicacy.

          Release date: Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON DIFFERENTIATION OF RAT BMSCs TO CHONDROCYTES TRANSFECTED BYTGF-β1 AND IGF-I GENE ALONE AND TOGETHER

          【Abstract】 Objective To investigate the secretion of target gene and differentiation of BMSCs transfected by TGF-β1 and IGF-1 gene alone and together into chondrocytes and to provide a new method for culturing seed cells in cartilage tissue engineering. Methods The plasmids pcDNA3.1-IGF-1 and pcDNA3.1-TGF-β1 were ampl ified and extracted, then cut by enzymes, electrophoresed and analyzed its sequence. BMSCs of Wistar rats were separated and purificated by the density gradient centrifugation and adherent separation. The morphologic changes of primary and passaged cells were observed by inverted phase contrast microscope and cell surface markers were detected by immunofluorescence method. According to the transfect situation, the BMSCs were divided into 5 groups, the non-transfected group (Group A), the group transfected by empty vector (Group B), the group transfected by TGF-β1 (Group C), the group transfected by IGF-1 (Group D) and the group transfected both by TGF-β1 and IGF-1 (Group E). After being transfected, the cells were selected, then the prol iferation activity was tested by MTT and expression levels were tested by RT-PCR and Western blot. Results The result of electrophoresis showedthat sequence of two bands of the target genes, IGF-1 and TGF-β1, was identical with the sequence of GeneBank cDNA. A few adherent cells appeared after 24 hours culture, typical cluster formed on the forth or fifth days, and 80%-90% of the cells fused with each other on the ninth or tenth days. The morphology of the cells became similar after passaging. The immunofluorescence method showed that BMSCs were positive for CD29 and CD44, but negative for CD34 and CD45. A few cells died after 24 hoursof transfection, cell clone formed at 3 weeks after selection, and the cells could be passaged at the forth week, most cells became polygonal. The boundary of some cells was obscure. The cells were round and their nucleus were asymmetry with the particles which were around the nucleus obviously. The absorbency values of the cells tested by MTT at the wavelength of 490 nm were0.432 ± 0.038 in group A, 0.428 ± 0.041 in group B, 0.664 ± 0.086 in group C, 0.655 ± 0.045 in group D and 0.833 ± 0.103 in group E. The differences between groups A, B and groups C, D, E were significant (P lt; 0.01). The differences between groups A and B or between C, D and E were not significant (P gt; 0.05)。RT-PCR and Western blot was served to detect the expression of the target gene and protein. TGF-β1 was the highest in group C, 0.925 0 ± 0.022 0, 124.341 7 ± 2.982 0, followed by group E, 0.771 7 ± 0.012 0, 101.766 7 ± 1.241 0(P lt; 0.01); The expression of IGF-1 was the highest in group E, 1.020 0 ± 0.026 0, 128.171 7 ± 9.152 0, followed by group D, 0.465 0 ± 0.042 0, 111.045 0 ± 6.248 0 (P lt; 0.01). And the expression of collagen II was the hignest in group E, 0.980 0 ± 0.034 0, 120.355 0 ± 12.550 0, followed by group C, 0.720 0 ± 0.026 0, 72.246 7 ± 7.364 0(P lt; 0.01). Conclusion The repairment of cartilage defects by BMSCs transfected with TGF-β1 and IGF-1 gene together hasa good prospect and important significance of cl inic appl ication in cartilage tissue engineering.

          Release date:2016-09-01 09:09 Export PDF Favorites Scan
        • THE COMPARATIVE STUDY ON THE REPARATIVE EFFECT OF PLGA AND COLLAGEN SPONGE COMBINEDWITH BMP ON THE ARTICULAR CARTILAGE DEFECT OF RABBITS/

          【Abstract】 Objective To compare the effect of PLGA and collagen sponge combined with rhBMP-2 on repairing ofarticular cartilage defect in rabbits respectively. Methods PLGA and collagen sponge were made into cyl inders which were 4 mm in diameter and 3 mm in thickness, and compounded with rhBMP-2 (0.5 mg). Defect 4 mm in diameter were made in both of femoral condyles of 24 two-month-old New Zealand white rabbits. The defects in right 18 knees were treated with PLGA/rhBMP-2 composites (experimental group 1), and the left 18 knees were treated with collagen sponge/rhBMP-2 composites (experimental group 2), the other 12 knees were left untreated as control group. At 4, 12 and 24 weeks after operation, the animals were sacrificed and the newly formed tissues were observed macroscopically and microscopically, graded histologically and analyzed statistically. Results From the results of macroscopical and microscopical observation, in the experimental group 1, the defects were filled with smooth and translucent cartilage; while in the experimental group 2, the white translucent tissues did notfill the defects completely; and in the two experimental groups, the new cartilage tissues demarcated from the surrounding cartilage,chondrocytes distributed uniformly but without direction; a l ittle fibrous tissue formed in the control group 4 weeks postoperatively. In the experimental group 1, the defects were filled completely with white, smooth and translucent cartilage tissue without clear l imit with normal cartilage; while in the experimental group 2, white translucent tissues formed, the boundary still could be recognized; in the two experimental groups, the thickness was similar to that of the normal cartilage; the cells paralleled to articular surface in the surface layer, but in the deep layer, the cells distributed confusedly, the staining of matrix was positive but a l ittle weak; subchondral bone and tide mark recovered and the new tissue finely incorporated with normal cartilage;however, in the control group, there was a l ittle of discontinuous fibrous tissue, chondrocytes maldistributed in the border andthe bottom of the defects 12 weeks postoperatively. In the experimental group 1, white translucent cartilage tissues formed, the boundary disappeared; in the experimental group 2, the color and the qual ity of new cartilage were similar to those of 12 weeks; in the two experimental groups, the thickness of the new cartilage, which appeared smooth, was similar to that of the normal cartilage, the chondrocytes arranged uniformly but confusedly; the staining of matrix was positive and subchondral bone and tide mark recovered, the new tissue finely incorporated with normal cartilage; in the control group, a layer of discontinuous fibrous tissue formed in the bottom of the defects 24 weeks postoperatively. Results of histological grade showed that there were significantdifference between experimental group (1 and 2) and control group at any time point (P lt; 0.01); the scores of 12 weeks and 24 weeks in experimental group 1 and 2 had a significant difference compared with that of 4 weeks (P lt; 0.01), there was no significant difference between 12 weeks and 24 weeks (P gt; 0.05), and there were no significant difference between the two experimental groups at the same time point (P gt; 0.05). Conclusion Both PLGA and collagen sponge as a carrier compounded with rhBMP-2 can repair articular cartilage defects.

          Release date:2016-09-01 09:09 Export PDF Favorites Scan
        • CONSTRUCTION OF RECOMBINANT ADENOVIRUS BEARING HUMAN TRANSFORMING GROWTH FACTOR β1 AND BONE MORPHOGENETIC PROTEIN 7 GENES AND ITS DIRECTIONAL INDUCEMENT EFFECT ON MARROW STROMAL STEM CELLS

          Objective To construct the recombinant adenovirus bearing human transforming growth factor β1(TGF-β1) and bone morphogenetic protein 7 (BMP-7) genes, and investigate its co-expression in the marrow stromalstemcells (MSCs) and bioactivity effect. Methods Using the replication defective adenovirus AdEasy as a carrier, MSCs were infected by the high-titer-level recombinant adenovirus taking TGF-β1 and BMP-7 genes. Immunocytochemistry, in situ hybridization,reverse transcription-polymerase chain reaction (RT-PCR), and hexuronic acid level test were used to detect the coexpression of the exogenous genes and to analyze their effect transfection on directive differentiation of MSCs. Results The immunocytochemistry staining showed that the brown coarse grains were situated in the cytoplasm of the most MSCs 72 h after infection. Procollagen ⅡmRNA in the cells was detected by the in situ hybridization, and the content of hexuronic acid in the culture mediumwas significantly increased 10 days after infection compared with the level before infecton (Plt;0.01). Conclusion The recombinant adenovirus bearing human TGF-β1 and BMP-7 genes can be constructed, and the exogenous gene can be coexpressed in MSCs, which may offer a novel approach to thelocal combination gene therapy for repairing joint cartilage defects.

          Release date:2016-09-01 09:25 Export PDF Favorites Scan
        • Effect of indianhedgehog gene transfection into rabbit bone marrow mesenchymal stem cells in promoting chondrogenic differentiation and inhibiting cartilage aging in rotary cell culture system

          ObjectiveTo investigate the effect of overexpressing the Indianhedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) in a simulated microgravity environment. MethodsThe 2nd generation BMSCs from rabbit were divided into 2 groups: the rotary cell culture system (RCCS) group and conventional group. Each group was further divided into the IHH gene transfection group (RCCS 1 group and conventional 1 group), green fluorescent protein transfection group (RCCS 2 group and conventional 2 group), and blank control group (RCCS 3 group and conventional 3 group). RCCS group cells were induced to differentiate into chondrocytes under simulated microgravity environment; the conventional group cells were given routine culture and chondrogenic induction in 6 well plates. During differentiation induction, the ELISA method was used to detect IHH protein expression and alkaline phosphatase (ALP) activity, and quantitative real-time PCR to detect cartilage and cartilage hypertrophy related gene expressions, and Western blot to detect collagen typeⅡ, agreecan (ANCN) protein expression; and methylene blue staining and Annexin V-cy3 immunofluorescence staining were used to observe cell slide. ResultsAfter transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in RCCS groups 1 and 2, the transfection efficiency was about 95%. The IHH protein levels of RCCS 1 group and conventional 1 group were significantly higher than those of RCCS 2, 3 groups and conventional 2, 3 groups (P < 0.05); at each time point, ALP activity of conventional 1 group was significantly higher than that of conventional 2, 3 groups (P < 0.05); ALP activity of RCCS 1 group was significantly higher than that of RCCS 2 and 3 groups only at 3 and 7 days (P < 0.05). Conventional 1 group expressed high levels of cartilage-related genes, such as collagen typeⅡand ANCN at the early stage of differentiation induction, and expressed high levels of cartilage hypertrophy-related genes, such as collagen type X, ALP, and Annexin V at the late stage (P < 0.05). RCCS 1 group expressed high levels of cartilage-related genes and low levels of cartilage hypertrophy-related genes at all stages. The expression of collagen typeⅡprotein in conventional 1 group was significantly lower than that of conventional 2 and 3 groups at 21 days after induction (P < 0.05); RCCS 1 group expressed high levels of collagen typeⅡand ANCN proteins at all stages (P < 0.05). Methylene blue staining indicated conventional 1 group was stained lighter than conventional 2 and 3 groups at 21 days after induction; while at each time point RCCS 1 group was significantly deeper than RCCS 2 and 3 groups. Annexin V-cy3 immunofluorescence staining indicated the red fluorescence of conventional 1 group was stronger than that of conventional 2 and 3 groups at each time point. The expression of red fluorescence in each RCCS subgroup was weak and there was no significant difference between the subgroups. ConclusionUnder the simulated microgravity environment, transfection of IHH gene into BMSCs can effectively promote the generation of cartilage and inhibit cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

          Release date: Export PDF Favorites Scan
        • CHONDROGENESIS OF BONE MARROW MESENCHYMAL STEM CELLS INDUCED BY TRANSFORMING GROWTH FACTOR β3 GENE IN DIANNAN SMALL-EAR PIGS

          ObjectiveTo observe transforming growth factor β3 (TGF-β3) gene expression and the chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) after TGF-β3 gene is transfected into BMSCs of Diannan small-ear pig. MethodsRecombinant adenovirus 5 (rAd5) was extracted as gene vector and packed into recombinant adenovirus rAd5-TGF-β3, double enzyme digestion and PCR identification were performed. BMSCs were isolated and cultured from bone marrow of 2-month-old Diannan small-ear pigs (weighing, 12-15 kg), and the 2nd generation of BMSCs were harvested for experiments. The experiments were divided into 3 groups. BMSCs were transfected with rAd5-TGF-β3 as experimental group and with empty vector as control group, and non-transfected BMSCs were used as blank control group. The transfection efficiency of exogenous gene was identified by flow cytometry, TGF-β3 protein expression by immunofluorescence and Western blot. The cell morphology of experimental group was observed by inverted phase contrast microscope, and the expression of collagen type II in each group was detected by Western blot. ResultsThe rAd5-TGF-β3 recombinant adenovirus was successfully constructed and transfected into BMSCs. Green fluorescence was observed by immunofluorescence microscope. Flow cytometry test showed the best transfection at 72 hours (transfection efficiency of 84.86%). Immunofluorescence staining showed that the expression of TGF-β3 protein was obvious at 72 hours; Western blot showed that there was a TGF-β3 positive band with a relative molecular mass of 30×103, while the control group and blank control group had no positive band. Obvious chondrogenic differentiation was observed in the experimental group after transfection in vitro, while the control group and blank control group had no obvious chondrogenic differentiation. Western blot showed that there was collagen type II positive band with a relative molecular mass of 130×103 at 21 days after culture, while the control group and blank control group had no positive band. ConclusionrAd5-TGF-β3 gene can be successfully transfected into BMSCs via adenovirus vectors, and stable expression of TGF-β3 protein can be observed, enhancing BMSCs differentiation into chondrocytes, which may provide an experimental basis for gene therapy of joint cartilage defects.

          Release date: Export PDF Favorites Scan
        9 pages Previous 1 2 3 ... 9 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜