ObjectiveTo study the effects of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) on the proliferation and differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MethodshBMSCs at passage 4 were divided into 4 groups according to different culture conditions:cells were treated with complete medium (α-MEM containing 10%FBS, group A), with complete medium containing 10 ng/mL LIF (group B), with complete medium containing 10 ng/mL bFGF (group C), and with complete medium containing 10 ng/mL LIF and 10 ng/mL bFGF (group D). The growth curves of hBMSCs at passage 4 in different groups were assayed by cell counting kit 8; cellular morphologic changes were observed under inverted phase contrast microscope; the surface markers of hBMSCs at passage 8 including CD44, CD90, CD19, and CD34 were detected by flow cytometry. ResultsThe cell growth curves of each group were similar to the S-shape; the cell proliferation rates in 4 groups were in sequence of group D > group C > group B > group A. Obvious senescence and differentiation were observed very early in group A, cells in group B maintained good cellular morphology at the early stage, with slow proliferation and late senescence; a few cells in group C differentiated into nerve-like cells, with quick proliferation; and the cells in group D grew quickly and maintained cellular morphology of hBMSCs. The expressions of CD44 and CD90 in groups A and C at passage 8 cells were lower than those of groups B and D; the expressions of CD19 and CD34 were negative in 4 groups, exhibiting no obvious difference between groups. ConclusionLIF combined with bFGF can not only maintain multiple differentiation potential of hBMSCs, but also promote proliferation of hBMSCs.
Objective To investigate the role of chemokine receptor CXCR7 in the development and progression of pancreatic carcinoma. Methods The short hairpin RNA (shRNA) targeting CXCR7 was designed and delivered into AsPC-1 pancreatic carcinoma cells to knock down CXCR7 expression. The cell proliferation, cell cycle, and apoptosis after CXCR7 knockdown was determined by MTT and flow cytometry, respectively. The invasive ability of pancreatic carcinoma cells was evaluated by using the Transwell system. Results Compared with the blank control group (BC group), transfection of AsPC-1 cells with CXCR7-shRNA resulted in a significantly decreased expression of CXCR7 at both mRNA and protein levels (P<0.05), and the ability of proliferation and invasion significantly decreased (P<0.05). Knockdown of CXCR7 also significantly increase apoptosis (P<0.05), induce cell cycle arrest at G0/G1 phase (P<0.05). Conclusions Taken together, the present study showes that the knockdown of CXCR7 expression may play an important role in pancreatic carcinoma development, invasion, and metastasis, CXCR7 may be a potential therapeutic target for the treatment of pancreatic carcinoma.
Objective To observe the influences of uncoupling protein 2 (UCP-2) rs660339 variants transfection on cell proliferation and apoptosis of human umbilical vein endothelial cell (HUVEC). Methods Two UCP-2 green fluorescent protein (GFP) lentivirus constructs were created with the rs660339 locus carried C or T (UCP-2C or UCP-2T), respectively. HUVEC were cultured after lentiviral infection of UCP-2C or UCP-2T. The expression of UCP-2C or UCP-2T was detected with real time polymerase chain reaction. Cell proliferation and cell apoptosis were compared among negative control (NC) group, UCP-2T group and UCP-2C group using CCK-8 cell viability and flow cytometry. Western blot and immunostaining were employed to examine the expression of Bcl-2 gene. Results The lentivirus constructs were successfully created. >80% of the transfected cells were found to express GFP under fluorescent microscope. The mRNA levels of UCP-2 gene were significantly increased (F=29.183,P=0.001) in the UCP-2T group and UCP-2C group. The CCK-8 assay revealed that on day two (F=15.970,P=0.004), day three (F=16.738,P=0.004), day four (F=5.414,P=0.045) post-infection, UCP-2T and UCP-2C group showed significantly greater proliferation than the NC cells. The apoptotic rate in the UCP-2T and UCP-2C group was significantly lower than NC group (F=277.138,P=0.000), and the apoptotic rate of UCP-2T was significantly lower than that of UCP-2C (P=0.003). The protein levels of Bcl-2 in the UCP-2T and UCP-2C group were significantly greater than that in the NC group (F=425.679,P=0.000), and the Bcl-2 expression of UCP-2T was greater than that of UCP-2C (P=0.002). The Bcl-2 density in the UCP-2T and UCP-2C group were greater than that in the NC group (F=11.827,P=0.008), while there was no difference between UCP-2T and UCP-2C group (P=0.404). Conclusion The variants of UCP-2 rs660339 may influence HUVEC proliferation and apoptosis, and UCP-2T showed a stronger effect of inhibiting apoptosis than UCP-2C.
Abstract: Objective To construct a nesprin-siRNA lentiviral vector(LV-siNesprin), transfect it into bone marrow mesenchymal stem cells (MSCs), and observe morphology changes of MSCs. Methods According to the target gene sequence of nesprin, we designed and synthesized four pairs of miRNA oligo, which were then annealed into double-strand DNA and identified by sequencing. MiRNA interference with the four kinds of plasmids (SR-1,SR-2,SR-3, andSR-4) were transfected into rat vascular smooth muscle cells, and reverse transcriptase chain reaction(RT-PCR) and Western blotting were performed to detect the interference effects and filter out the most effective interference sequence. We used the best interference sequence carriers and pDONR221 to react together to get the entry vectors with interference sequence. Then the objective carrier pLenti6/V5-DEST expressing both entry vectors and lentiviral vectors was restructured to get lentiviral expression vector containing interference sequence (LV-siNesprin+green fluoresent protein (GFP)), which was packaged and the virus titer was determined. LV-siNesprin+GFP was transfected to MSCs, and the expression of nesprin protein(LV-siNesprin+GFP group,GFP control group and normal cell group)was detected by Western blotting. The morphology of MSCs nuclear was observed by 4’,6-diamidino-2-phenylindole (DAPI) stain. The proliferation of MSCs (LV-siNesprin+GFP group,GFP control group and normal group) was detected by 3-(4,5-dimethylthia- zol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) after lentivirus transfected to MSCs at 24, 48, 72, and 96 hours. Results The four pairs of miRNA oligo were confirmed by sequencing. Successful construction of LV-siNesprin was confirmed by sequencing. The best interference with miRNA plasmid selected by RT-PCR and Western blotting was SR-3. Lentiviral was packaged, and the activity of the virus titer of the concentrated suspension was 1×106 ifu/ml. After MSCs were transfected with LV-siNesprin, nesprin protein expression significantly decreased, and the nuclear morphology also changed including fusion and fragmentation. The proliferation rate of MSCs in the LV-siNesprin+GFP group was significantly slower than that of the GFP control and normal cell groups by MTT. Conclusion Nesprin protein plays an important role in stabilizing MSCs nuclear membrane, maintaining spatial structure of MSCs nuclear membrane,and facilitating MSCs proliferation.
Objective To study the effects of L-arginine (L-Arg) on cell proliferation, inducible nitric oxide synthase (iNOS) expression and cell cycle in human colon carcinoma cell line LS174 through nitric oxide (NO) pathway. Methods LS174 cells were cultured in medium with L-Arg at different concentrations for different times. MTT method was employed to evaluate the level of the cell proliferation. The production of NO in culture supernatants of LS174 cell was detected with enzyme reduction of nitrate. The distribution of the cell cycle was detected with the flow cytometry (FCM). The expression level of iNOS in the cells was determined by Western blot and SP immunocytochemical staining method. Results The growth of LS174 was promoted by the L-Arg at low concentration (0.125 mmol/L) and inhibited at high concentrations (0.5, 2, 8 and 32 mmol/L). The level of NO was increased with the increasing concentration of L-Arg in culture medium. To compare with the control group, the ratio of cells at S phase was increased after 48 hours’ treatments with high concentrations (0.5, 2, 8 and 32 mmol/L) of L-Arg (P<0.05, P<0.01); while there was no obvious difference after treatments with low concentration (0.125 mmol/L) of L-Arg (Pgt;0.05). With the increase of the concentration of L-Arg, the expression of iNOS was increased as compared with control group. The higher the concentration of L-Arg was, the better the effect. Conclusion L-Arg can induce the expression of iNOS resulting in increase the production of nitric oxide (NO). Low concentration of L-Arg can promote the growth of LS174 cells, while high concentration ones can inhibit growth and proliferation. The high concentration of L-Arg could induce S phase arrestion in the cell cycle.
Objective To study the effects of adenosine 2A receptor activation on activation, proliferation, and toxicity of T lymphocytes stimulated by phytohemagglutinin (PHA) in vitro. Methods A model of activated T cells was established by stimulating the cells with PHA. Those T cells were treated with different concentrations of adenosine 2A receptors agonist (0.01 μmol/L, 0.1 μmol/L, 1 μmol/L, and 10 μmol/L CGS21680). The expressions of CD69, CD25 and proliferation of T cells were measured by fluorescent antibody stain and flow cytometry. ELISA method was used to detect IL-2 and INF-γ levels. Results All concentrations of CGS21680 significantly inhibited the expressions of CD25 and CD69 on PHA-stimulated T cells surface and proliferation of T cells (Plt;0.05, Plt;0.01). IL-2 and INF-γ secreted by T cells were significantly suppressed, too (Plt;0.01). Conclusion Activation of adenosine 2A receptor can effectively inhibit the activation, proliferation, and toxicity of T cells in vitro.
Objective:To detect collagen I synthesis activity in the vitreous of PVR induced by macrophages in rabbits. Methods:PC Ⅲ (Procollagen Ⅲ ) concentrations were measured by radioim- munoassay in the vitreous samples of 14 rabbit eyes with experimental PVR and 14 control eyes. Results:The mean PC Ⅲ concentration on the 7th day after macrophage injection as 257.58mu;g/L(range,236.04~266.88mu;g/L,n= 4)and significantly increased on the 14th day later. On the 28th day the mean concentration of PC Ⅲ as 912.23mu;g/L (range, 881.36~943.10mu;g/L ;n= 2). There was a significant difference between the 7th and the 14th, 21st of 28th day statistically(P<0.05). PC Ⅲ was not detected in control eyes. Conclusion:The PC Ⅲ level in the vitreous of rabbit eyes with experimental PVR increased significantly from the 7th to the 28th day after macrophages injection and is well consistent with the time course of scarring and the development of traction retinal detachment in the PVR model. (Chin J Ocul Fundus Dis,1996,12: 43-44)
ObjectiveTo observe the expression in vitro and the influence of adenovirus-mediated recombinant Tum5 gene to the proliferation, migration and tubing of Rhesus RF/6A cell under high glucose. MethodsTo construct the adenovirus vector of recombinant Tum5 gene (rAd-Tum5), and then infected RF/6A cell with it. The Flow Cytometry was used to detect the infection efficiency. RF/6A cells were divided into normal group, high glucose (HG)-control group (HG group), empty expression vector group (HG+rAd-GFP), and HG+rAd-Tum5 group. Western blot was used to detect the expression of Tum5. The CCK-8 test was applied to detect the proliferation of RF/6A cell, the Transwell test was applied to detect the migration and the Matrigel test was applied to detect the tubing of RF/6A cell under high glucose. The proliferation, migration and tubing of RF/6A were tested respectively by CCK-8 test, Transwell test and Matrigel test. ResultsThe adenovirus vector of recombinant Tum5 gene was successfully constructed. The infection efficiency of rAd-Tum5 in RF/6A cell was 50.31% and rAd-GFP was 55.13% by the Flow Cytometry. The results of Western blot indicated that Tum5 was successfully expressed in RF/6A cell. The result of CCK-8 test, Transwell test and Matrigel test indicated that there were statistical differences between all groups in proliferation, migration and tubing of the RF/6A cell (F=44.484, 772.666, 137.696;P < 0.05). The comparison of each group indicated that the HG group was higher than normal group (P < 0.05). There were no statistical differences between HG group and HG+rAd-GFP group (P > 0.05). However, the HG+rAd-Tum5 group was less than HG group (P < 0.05), and the same to HG+rAd-GFP (P < 0.05). ConclusionThe adenovirus vector of recombinant Tum5 gene can inhibit the proliferation, migration and tubing of RF/6A cell under high glucose.
Objective To investigate the effect of ursolic acid on the proliferation and apoptosis of human osteosarcoma cell line U2-OS and analyze its mechanism. Methods Human osteosarcoma cell line U2-OS was divided into 4 groups, which was cultured with ursolic acid of 0, 10, 20, and 40 μmol/L, respectively. At 0, 24, 48, and 72 hours after being cultured, the cell proliferation ability was detected by cell counting kit 8 (CCK-8). At 48 hours, the effects of ursolic acid on cell cycle and apoptosis of U2-OS cells were measured by flow cytometry. Besides, the expressions of cyclin D1 and Caspase-3 were detected by real-time fluorescent quantitative PCR and Western blot. Results CCK-8 tests showed that the absorbance (A) value of each group was not significant at 0 and 24 hours (P>0.05); but the differences between groups were significant at 48 and 72 hours (P<0.05). Flow cytometry results showed that, with the ursolic acid concentration increasing, the G1 phase of U2-OS cells increased, the S phase and G2/M phase decreased, and cell apoptosis rate increased gradually. There were significant differences between groups (P<0.05). Compared with the 0 μmol/L group, the relative expressions of cyclin D1 mRNA and protein in 10, 20, and 40 μmol/L groups significantly decreased (P<0.05); whereas, there was no significant difference in relative expression of Caspase-3 mRNA between groups (P>0.05). However, with the ursolic acid concentration increasing, the relative expressions of pro-Caspase-3 protein decreased and the relative expressions of activated Caspase-3 increased; there were significant differences between groups (P<0.05). Conclusion Ursolic acid can effectively inhibit the proliferation of osteosarcoma cell line U2-OS, induce the down-regulation of cyclin D1 expression leading to G0/G1 phase arrest, increase the activation of Caspase-3 and promote cell apoptosis.
Pulmonary arterial hypertension(PAH) is a kind of pulmonary hypertension disease. Recently, the researches of its pathogenesis have reached more and more deeply. The treatment of pulmonary arterial hypertension is individual and systematic, not only relying on medicine treatment. The treatment of PAH is as follows: common treatment, non-specific medicine treatment, targeted medicine treatment, NO breath-in treatment, gene treatment, intervention and surgery treatment.The article reviews the main treatment of pulmanory arteral hypertesion to provide new thought and evidence in clinic.