• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "occlusion/therapy" 19 results
        • Thrombolysis infusion via microcatheter treating central retinal artery occlusion

          ObjectiveTo investigate the therapeutic effects of thrombolysis infusion via microcatheter on the treatment of central retinal artery occlusion(CRAO). MethodsUrokinase (UK) was directly infused via ophthalmic artery (OA) by microcatheter (6 patients) or via intravenous (7 patients) to dissolve the thrombus. The patency of the artery was evaluated by fundus fluorescein angiography (FFA), and the effect of fibrinolytic activity on the systemic changes was observed by blood biochemical examination simultaneously. ResultsIn 6 patients in the microcatheter group, 5 had completely and 1 had partly reopened OA on the morrow of UK infusion with the patency rate of 83.33%, while in 7 patients in vein group, 3 completely reopened, 2 partly reopened and 2 obstructed OA were found with the patency rate of 42.86%. The difference between the two groups was significant. No obvious change of index of blood coagulation system was found in catheter group, which had great disparity compared with the vein group.ConclusionUrokinase infusion via microcatheter in CRAO has better therapeutic impact and smaller effect on systemic action. (Chin J Ocul Fundus Dis, 2005,21:16-19)

          Release date:2016-09-02 05:52 Export PDF Favorites Scan
        • The efficacy of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion

          ObjectiveTo investigate the efficacy and safety of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion (BRVO) during one year period. MethodsThe data of 31 eyes from 31 consecutive patients with macular edema secondary to BRVO during one year follow-up visit were retrospectively analyzed. Mean best corrected visual acuity (BCVA) logMAR was (0.74±0.36) and mean central retinal thickness (CRT) was (484.48±164.81)μm at baseline. All patients received standardized clinical comprehensive examinations including vision, intraocular pressure and optical coherence tomography for diagnosis before treatment. All patients received intravitreal injections of 0.5 mg ranibizumab (0.05 ml) at first visit. The continue PRN treatment were based on the visual acuity changes and the optical coherence tomography findings. Eyes received combined triamcinolone acetonide 0.05 ml (40 mg/ml) and ranibizumab for macular edema recurrence after two injections of ranibizumab and received laser photocoagulation during 10-14 days after third injections of ranibizumab. Mean injection of ranibizumab was 3.52±2.01, 15 eyes with triamcinolone acetonide (0.84±1.21), 21 eyes with laser photocoagulation (0.97±0.95) and 12 eyes with three treatment. Compared the visual acuities and CRTs of the first and the last visits by statistical analysis. ResultsMean visual acuity improved significantly to 0.42±0.33 logMAR (t=6.611, P=0.000). Mean improvement of visual acuity was 2.90±3.07 lines. A gain of three or more logarithmic lines was evaluated in 20/31 eyes (64.52%) at the last visit. Mean CRT was (326.19±117.80)μm (t=4.514, P=0.000).Mean reduction of CRT was (333.58±134.17)μm. A decrease of 100μm of CRT was evaluated in 17/31 eyes (54.84%). No severe ocular and systematic side effect was found. ConclusionThe efficacy and safety of intravitreal ranibizumab and (or) triamcinolone combined with laser photocoagulation for macular edema secondary to BRVO were assured.

          Release date: Export PDF Favorites Scan
        • The alterations of microvascular structure in branch retinal vein occlusion eyes before and after anti-vascular endothelial growth factor drug therapy

          ObjectiveTo observe the alterations of microvascular structure in patients with macular edema (ME) associated with branch retinal vein occlusion (BRVO) before and after anti-VEGF drug therapy.MethodsA retrospective case study. Thirty-two eyes of 32 patients with unilateral BRVO-ME at Department of Ophthalmology in Beijing Hospital during November 2016 to June 2018 were enrolled in this study. There were 14 males (14 eyes) and 18 females (18 eyes), with the mean age of 57.81±10.58 years, and the mean course of the disease of 12.13±7.13 d. The affected eyes was defined as the eyes with BRVO-ME. All the affected eyes received intravitreal anti-VEGF drug injections (3+PRN). BCVA and OCT angiography (OCTA) were performed on the BRVO and fellow eyes before and after intravitreal anti-VEGF drug injections. The scanning region in the macular area was 3 mm×3 mm. Macular blood flow density in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), macular hemodynamics parameters [foveal avascular area (FAZ) area, perimeter (PERIM), acircularity index (AI) and vessel density within a 300um width ring surrounding the FAZ (FD-300)] and central retinal thickness (CRT) were measured in all eyes. Paired samples t-test and Univariate Linear Regression were used in this study.ResultsComparing with fellow eyes, the mean macular blood flow density measured in the entire scan was lower in BRVO-ME eyes in the SCP (t=6.589, P=0.000) and DCP (t=9.753, P=0.000), PERIM (t=4.054, P=0.000) ), AI enlarged in BRVO-ME eyes (t=4.988, P=0.000), FD-300 was lower in BRVO-ME eyes (t=2.963, P=0.006), FAZ area enlarged in BRVO-ME eyes (t=0.928, P=0.361). The blood flow density in the DCP was the parameter most significantly correlated with BCVA and FAZ area (r=0.462, ?0.387;P< .05). After 3 intravitreal injections of anti-VEGF drug, the CRT and FD-300 decreased, BCVA increased (t=9.865, 3.256, ?10.573; P<0.05), PERIM and AI was not changed significantly (t=0.520, 2.004; P>0.05). The blood flow density in the SCP decreased (t=2.814, P<0.05), but the blood flow density in the DCP was not changed significantly (t=0.661, P=0.514). Contrarily, comparing with after 1 anti-VEGF drug injection, the blood flow density in the DCP increased after 2 anti-VEGF drug injections (t=3.132, P<0.05). FAZ area enlarged in BRVO-ME eyes (t=5.340, P<0.001). Comparing with last anti-VEGF drug injection, FAZ area enlarged after every anti-VEGF drug injection (t=2.907, 3.742, 2.203; P<0.05).ConclusionsIn BRVO-ME eyes, the blood flow density in the SCP and DCP are decreased. The blood flow density in the DCP is positively correlated with BCVA and negatively correlated with FAZ area. After anti-VEGF drug therapy, the blood flow density is decreased in the SCP and increased in the DCP, FAZ area enlarged gradually, PERIM and AI are not changed significantly.

          Release date:2019-01-19 09:03 Export PDF Favorites Scan
        • Clinical research status and progress of central retinal artery occlusion

          Embolus occlusion in the retinal artery is the most common cause of central retinal artery occlusion (CRAO), while hypertension is the most common risk factor of CRAO, and ipsilateral carotid artery stenosis is the most significant risk factor in CRAO. Current clinical treatments include conservative treatments such as dilation of blood vessels and lowering the intraocular pressure (IOP), as well as aggressive treatments like intravenous thrombolysis and Nd:YAG laser. Both thrombolysis and Nd:YAG laser treatment can improve the visual acuity of CRAO patients, but because of its lack of randomized controlled trials, further clinical studies are needed to determine their efficacy and safety. CRAO patients may have vascular embolism at other sites in the body, and may cause different degrees of cardiovascular and cerebrovascular events. The probability of secondary ocular neovascularization following the occurrence of these events is 2.5% to 31.6%. In addition to eye care, clinicians should also focus more on preventing cardiovascular and cerebrovascular events, and focus on the screening and active treatment of systemic risk factors to reduce the incidence and mortality of cardiovascular and cerebrovascular events.

          Release date:2018-05-18 06:38 Export PDF Favorites Scan
        • A prospective randomized clinical trial on intravitreous injection of Conbercept combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion

          ObjectiveTo investigate the effects and safety of intravitreous injection of Conbercept combined with laser photocoagulation for macular edema secondary to branch retinal vein occlusion. MethodsAll subjects were assigned randomly to 3 groups:intravitreal Conbercept combined with laser photocoagulation group (CL group), intravitreal triamcinolone combined with laser photocoagulation group (TL group), and photocoagulation group (L group). The best-corrected visual acuity (BCVA), central macular thickness (CMT), fundus oculi and fundus fluorescein angiography (FFA), intraocular pressure (IOP), slit lamp were observed before and 1 day, 1 week, 1 month, 3 months after treatment. The changes of post-treatment BCVA and CMT in pre-therapy and post-treatment were compared, and related complications were recorded. ResultsThere were significant differences of BCVA (χ2=9.754, 12.430, 17.424, 13.189) and CMT (F=10.614, 4.099, 4.927, 8.99) between 3 groups in post-treatment 1 day, 1 week, 1 month and 3 months. The numbers of subjects of improving and stabilizing BCVA in CL group were remarkably more than that in L group in every post-treatment follow-up time (P < 0.01), whereas the CMTs in CL group were significantly less than that in L group in every post-treatment follow-up time (P < 0.05). The CMTs in post-treatment 1 day, 1 week, 1 month, 3 months were thinner than that in pretreatment in CL group and TL group (P < 0.05). Meanwhile, there was no significant difference (P > 0.05)between any two CMTs in post-treatment 1 day, 1 week, 1 month and 3 months in CL group. Yet, the CMT in post-treatment 3 months was thicker than those in post-treatment 1 day, 1 week and 1 month in TL group(P < 0.05). And there was no significant difference(P > 0.05)between any two CMTs in post-treatment 1 day, 1 week and 1 month in TL group. There was no conspicuous difference in CMTs(P > 0.05)between in CL group and in TL group in every viewing time, except for that in post-treatment 3 months(P < 0.05). There was only 1 case of intraocular hypertension in post-treatment in TL group. ConclusionsIntravitreous injection of Conbercept combined with laser photocoagulation for macular edema secondary to BRVO is effective, safe, and superior to laser photocoagulation only. Also it had a longer effective duration and less complications than intravitreal triamcinolone combined with laser photocoagulation.

          Release date: Export PDF Favorites Scan
        • Internal carotid artery angiography and interventional thrombolytic therapy for central retinal artery occlusion

          ObjectiveTo evaluate the therapeutic effects of super-selective arterial catheterization with thrombolysis for central retinal artery occlusion (CRAO).MethodsThe clinical data of 16 patients with CRAO were collected. Aortic arch angiography with the catheterization through femoral artery firstly, and then the selective internal carotid artery angiography had been performed on all of the patients, including 12 ones who had undergone the urokinase thrombolysis therapy.ResultsIn the 16 patients, 3 with the severe straitness of the internal carotid artery and 1 with occlusion of incision of the ocular artery had not been treated by thrombolysis; and the others with occlusion of arterial trunk and CRAO had undergone thrombolysis therapy successfully. After the treatment, the visual acuity of the patients had improved in different degree and no systemic side effect had been found during the treatment.ConclusionsSuper-selective arterial catheterization with thrombolysis for CRAO may improve the visual acuity of the patients. The effects and risks of this treatment should be evaluated in further study.(Chin J Ocul Fundus Dis, 2005,21:20-21)

          Release date:2016-09-02 05:52 Export PDF Favorites Scan
        • Clinical efficacy of intravitreal conbercept injection and macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein oclussion

          Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.

          Release date:2017-04-01 08:56 Export PDF Favorites Scan
        • Clinical features and outcomes of vitrectomy for diabetic retinopathy with central retinal vein occlusion

          Objective To observe the clinical features and outcomes of vitrectomy for diabetic retinopathy (DR) with central retinal vein occlusion (CRVO) in type 2 diabetes mellitus (T2DM). Methods A total of 192 patients (241 eyes) with proliferative DR (PDR) who underwent vitrectomy were enrolled in this study. All the patients were diagnosed as vitreous hemorrhage (VH) because of suddenly decreased vision. There were 93 eyes with tractional retinal detachment (TRD) and six eyes with neovascularization of iris (NVI). The patients were divided into PDR with CRVO group (group A, 41 eyes) and PDR group (group B, 200 eyes) according to the results of fundus examination. All patients received vitrectomy with silicone oil and C3F8 gas tamponade. There were 138 eyes with silicone oil tamponade which including 30 eyes in group A and 108 eyes in group B. The difference of number in silicone oil-filled eyes in two groups was statistically significant (chi;2=5.110,P<0.05). There were 38 eyes with C3F8 gas tamponade which including six eyes in group A and 32 eyes in group B. There was no difference in C3F8 gas-filled eyes numbers in two groups (chi;2=0.048, P>0.05). The follow-up ranged from one to 60 months, with the mean of (28.69plusmn;17.28) months. The corrected vision, retinal reattachment, persisting macular edema (ME), neovascular glaucoma (NVG) and repeated VH after surgery were comparatively analyzed. Results Of 241 eyes, there were 41 eyes (17.0%) with CRVO. Before surgery, the differences of corrected vision (Z=-0.138), intraocular pressure (t=0.966), whether there was TRD or not (chi;2=0.412), whether underwent panretinal photocoagulation or not (chi;2=1.416) were not statistically significant (P>0.05), but the difference of whether NVI were present or not was statistically significant (chi;2=31.724,P<0.05) between two groups. After surgery, the corrected vision improved in both two groups (Z=2.319, 4.589; P<0.05). There was no difference of corrected vision after surgery between two groups (Z=0.782,P>0.05). Postoperative complications occurred in 94 eyes, including 26 eyes in group A and 68 eyes in group B. The differences of incidence of reoperation (chi;2=0.498), retinal reattachment (chi;2=0.818), persisting ME (chi;2=2.722) between two groups after surgery were not statistically significant (P>0.05). The incidence of repeated VH (chi;2=5.737) and NVG (chi;2=6.604) in group A were higher than those in group B (P<0.05). Conclusions CRVO is commonly found to coexist with DR in T2DM patients with VH. Combined with CRVO patients are more likely to suffer NVI. Vitrectomy can improve the visual function in PDR with CRVO patients.

          Release date:2016-09-02 05:22 Export PDF Favorites Scan
        • Optimal laser energy for laser induced chorioretinal venous anastomos <br>is in the treatment of experimental branch retinal vein occlusion

          Objective lt;brgt;To inspect the rate of success of anastomosis and tissue damage with different power levels of photocoagulation in the treatment of experimental branch retinal vein occlusion (BRVO) by laser induced chorioretinal venous anastomosis. lt;brgt;Methods lt;brgt;Forty pigmented rabbits (80 eyes) were divided into four groups in random, and 10 (20 eyes) in each. Chroioretinal venous anastomosis was attempted to create using the krypton red laser with 4 different power levels (group A: 400 mW,group B: 600 mW,group C: 800 mW,group D: 1000 mW) in these animals in which BRVO had previously been created photodynamically. Fundus photography and fundus fluorescein angiography were performed at various times after the treatment and histological examination was taken at the end of the study. lt;brgt;Results lt;brgt;The model of BRVO was successfully set up. At the lowest power of 400 mW there was an absence of anastomosis formation and the damage to the retina and choroid was mild, Bruch′s membrane showed no evidence of rupture. At the power levels of 600 mW and 800 mW an anastomosis formed in 15% and 55% respectively and the damage was medium in degree. At the highest power level of 1 000 mW a 80% rate of success was obtained, however, the damage to the retina and choroid tended to be severe.The difference of the rate of success of anastomosis between different groups was highly significant (P=0.001), the difference between group B and group C was also highly significant (PBC=0.008), and the difference between group A and group B, group C and group D was not significant (PAB=0.072、PCD=0.091). lt;brgt; lt;brgt;Conclusion lt;brgt;The optimal power level of krypton red laser induced chorioretinal venous anastomosis is 800 mW, 0.1 s, 50 μm in our study. lt;brgt; lt;brgt;(Chin J Ocul Fundus Dis,2002,18:13-16)

          Release date:2016-09-02 06:01 Export PDF Favorites Scan
        • Krypton laser photocoagulation of macular branch retinal vein occlusion

          Objective The present study focus on the macular branch retinal vein occlusion (MBRVO) with and without laser treatment,and evaluate prospectively whether laser treatment is useful in improving the visual acuity and reducing the macular edema. At the same time to learn the difference of macular light sensitivity before and after laser treatment.Methods Forty-five eyes of forty-five patients with MBRVO and macular edema were randomized to laser treatment and no laser treatment. Follow up examinations were performed every 3 months. We compared the difference of visual improvement, resolution of macular edema between the two groups. The central 30°visual field of 20 patients with MBRVO were examined at pretreatment and 3 months after laser treatment. A comparison of light sensitivity at fovea ,central 10°and 11~30°eccentricity were done between before and after laser treatment. Results Comparison of visual improvement and resolution of macular edema showed a statistical difference between laser treatment and no laser treatment. The mean reduction of macular light sensitivity at the fovea and 11~30°3 months after the treatment has no statistical difference between before and after treatment (Pgt;0.05). But the mean light sensitivity at central 10°eccentricity were significantly decreased 3 months after photocoagulation (Plt;0.05).Conclusion The laser treatment might promote or accelerate visual acuity recovery and reduce the macular edema. There is no significant difference about the efficiency on macular function after laser treatment.(Chin J Ocul Fundus Dis,2003,19:201-268)

          Release date:2016-09-02 06:00 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜