• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "neuron" 45 results
        • MORPHOLOGICAL CHANGES AND ELECTROPHYSIOLOGICAL STUDY OF MOTOR NEURON OF SPINAL CORD FOLLOWING DELAYED REPAIR OF PERIPHERAL NERVE INJURY

          OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.

          Release date:2016-09-01 11:05 Export PDF Favorites Scan
        • Preliminary study on the construction of three-dimensional hippocampal neural network by using microfluidic technology in vitro

          ObjectiveTo preliminary study on the feasibility of constructing three-dimensional (3D) hippocampal neural network in vitro by using microfluidic technology.MethodsA network patterned microfluidic chip was designed and fabricated by standard wet etching process. The primary hippocampal neurons of neonatal Sprague Dawley rats were isolated and cultured, and then inoculated on microfluidic chip for culture. Immunofluorescence staining was used to observe the growth of hippocampal neurons at 3, 5, and 7 days of culture and electrophysiological detection of hippocampal neuron network at 7 days of culture.ResultsThe results showed that the number of hippocampal neurons increased gradually with the prolongation of culture time, and the neurite of neurons increased accordingly, and distributed uniformly and regularly in microfluidic chip channels, suggesting that the 3D hippocampal neuron network was successfully constructed in vitro. Single and multi-channel spontaneous firing signals of hippocampal neuronal networks could be detected at 7 days of culture, suggesting that neuronal networks had preliminary biological functions.ConclusionPatterned microfluidic chips can make hippocampal neurons grow along limited paths and form 3D neuron networks with corresponding biological functions such as signal transduction, which lays a foundation for further exploring the function of neuron networks in vitro.

          Release date:2019-01-25 09:40 Export PDF Favorites Scan
        • Experimental study of urinary center change in pons after conus medullaris injury in rats

          Objective To observe the structural changes of urinary center and the expression of Bcl-2 after conus medullaris injury in rats brain so as to explore the possible influence factors of degeneration in brain. Methods Thirty-six adult Sprague-Dawley rats were randomly divided into experimental group (n=30) and control group (n=6). In the experimental group, the conus medullaris injury model was established by cutting off the spinal nerve below L4, and no treatment was done in the control group. The modeling operations in the experimental group were successful, and 2 rats died at 3 months and 5 months after modeling operation respectively, which may be caused by renal failure or urinary tract infection. In the experimental group, 6, 6, 6, 5, and 5 rats were killed at 1 day, 1 week, and 1, 3, 6 months after operation respectively, and 1 rat was killed at each time point in the control group. The dorsolateral tissue of the pontine tegmentum was harvested to perform HE staining and Bcl-2 immunohistochemical SP staining. Results HE staining showed that there was no obvious difference between the experimental group and the control group at 1 day after operation, the neurons were densely packed, arranged neatly, and the nucleoli were clear; at 1 week, the space between the neurons in the experimental group were slightly widened; at 1 month, nucleus retraction in some neurons happened in the experimental group; at 3 and 6 months, the nuclei in the experimental group were more and more condensed, and even some cells disappeared. Bcl-2 immunohistochemical SP staining showed that the expression of Bcl-2 in the control group was weakly positive. The positive expression of Bcl-2 was found at 1 day after operation in the experimental group; the positive expression of Bcl-2 at 7 days after operation was significantly higher than that in the control group, and reached the peak; the positive expression of Bcl-2 decreased gradually at 1, 3, and 6 months after modeling operation, but it was still higher than that of the control group. Conclusion The urinary center appears structure degeneration and necrocytosis after conus medullaris injury in rats brain. The elevated expression of Bcl-2 may be associated with brain tissue repair and function remodeling.

          Release date:2018-01-09 11:23 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY ON PROTECTIVE EFFECTS OF CELL THERAPY ON VENTRICORNUAL MOTOR NEURON

          Objective To research the protective effects of different allogeneic cells injected into denervated muscles on ventricornual motor neuron. Methods Thirty-six adult female SD rats, weighting 120-150 g, were individed into four groups randomly and each group had nine. Left ischiadic nerves of all the SD rats, which were cut down on germfree conditions,were operated by primary suture of epineurium. Different cells were injected into the triceps muscles of calf in each group after operation with once a week for 4 weeks:1 ml Schwann cells (1×106/ml) in group A, 1 ml mixed cells ofSchwann cells and myoblast cells (1∶1,1×106/ml) in group B, 1 ml extract from the mixed cells of Schwann cells, myoblast cells and endotheliocytes (1∶1∶1,1×106/ml)in group C,and 1 ml culture medium without FCS as control group(group D). The observation of enzymohistochemistry and C-Jun expression in the ventricornual motor neuron was made after three months of operation. Results After 3 months of operation, the expressions of C-Jun in groups A, B and C were superiorto that in group D; the number of neuron was more than that of group D. The expressions of C-Jun in the ventricornual motor neuron were as follows: 128.591±0.766 in group A, 116.729±0.778 in group B, 100.071±2.017 in group C and 144.648±2.083 in group D; showing statistically significant difference between groupsA, B, C and D(P<0.01). Enzymohistochemistry showed the well outlined and wellstacked cell body of neuron in groups A, B and C, and illdefined boundary of cytoplasm and nucleus. There was statistically significant defference in enzyme activity of the ventricornual motor neuron between groups(P<0.01). Conclusion All of the Schwann cells,mixed cells of Schwann cells with myoblast cells,and the extract from Schwann cells, myoblast cells and endotheliocytes can protect the ventricornual motor neuron. And the protectiveeffect of the extract from Schwann cells, myoblast cells and endotheliocytes is superior to that of Schwann cells and mixed cells.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • In vitro pathological model of Alzheimer's disease based on neuronal network chip and its real-time dynamic analysis

          Alzheimer’s disease (AD) is a chronic central neurodegenerative disease. The pathological features of AD are the extracellular deposition of senile plaques formed by amyloid-β oligomers (AβOs) and the intracellular accumulation of neurofibrillary tangles formed by hyperphosphorylated tau protein. In this paper, an in vitro pathological model of AD based on neuronal network chip and its real-time dynamic analysis were presented. The hippocampal neuronal network was cultured on the microelectrode array (MEA) chip and induced by AβOs as an AD model in vitro to simultaneously record two firing patterns from the interneurons and pyramidal neurons. The spatial firing patterns mapping and cross-correlation between channels were performed to validate the degeneration of neuronal network connectivity. This biosensor enabled the detection of the AβOs toxicity responses, and the identification of connectivity and interactions between neuronal networks, which can be a novel technique in the research of AD pathological model in vitro.

          Release date:2020-02-18 09:21 Export PDF Favorites Scan
        • Therapeutic effect of stem cell-based glial cell derived neurotrophic factor and ciliary neurotrophic factor on retinal degeneration of CLN7 neuronal ceroid-lipofuscinosis mouse model

          ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.

          Release date:2024-07-16 02:36 Export PDF Favorites Scan
        • Spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of rat’s brain

          Physiological studies have revealed that rats perform spatial localization relying on grid cells and place cells in the entorhinal-hippocampal CA3 structure. The dynamic connection between the entorhinal-hippocampal structure and the prefrontal cortex is crucial for navigation. Based on these findings, this paper proposes a spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of the rat’s brain, with the aim of endowing the mobile robot with strong spatial navigation capability. Using the hippocampal CA3-prefrontal spatial navigation model as a foundation, this paper constructed a dynamic self-organizing model with the hippocampal CA1 place cells as the basic unit to optimize the navigation path. The path information was then fed back to the impulse neural network via hippocampal CA3 place cells and prefrontal cortex action neurons, improving the convergence speed of the model and helping to establish long-term memory of navigation habits. To verify the validity of the method, two-dimensional simulation experiments and three-dimensional simulation robot experiments were designed in this paper. The experimental results showed that the method presented in this paper not only surpassed other algorithms in terms of navigation efficiency and convergence speed, but also exhibited good adaptability to dynamic navigation tasks. Furthermore, our method can be effectively applied to mobile robots.

          Release date:2024-04-24 09:40 Export PDF Favorites Scan
        • SPINAL PATHOLOGIC CHANGES AND AXONAL REGENERATION AFTER BRACHIAL PLEXUS ROOT ANASTOMOSIS IN RATS

          Objective To evaluate the feasibil ity of direct anastomosis in the rat model of the brachial plexus extravertebral foramen nerve root division of C5-7. Methods Forty-eight SD rats (male or female) aging 4-6 months and weighing 250-300 g were selected to make the model of extravertebral foramen nerve root division of C5-7. The left C5-7 nerve roots, as the experimental sides, were separated to the brachial plexus nerve trunk and the transected roots were sutured to theproximal stump immediately after cutting off the brachial plexus extravertebral foramen nerve root division. The right C5-7nerve roots, as the control sides, received no operation. The general condition of rats after operation was observed. The gross observation, the histological observation and BDA nerve tracing technology were adopted to observe the wet weight of musculus biceps brachii, the cross section of biceps brachii and the spinal cord and distal nerve trunk at 3 weeks, 3 months and 6 months after operation. Results All rats survived well after operation. Claudication and unfold claw reflex were observed in the experimental sides, and the unfold claw reflex disappeared 3 months later. Comparatively, the control sides were normal. Nerve adhesion aggravated gradually and the neural stems were shriveled within 6 months after operation in the experimental sides. Comparatively, the control sides were normal. The wet weight of biceps brachii in the experimental sides and the control sides at 3 weeks, 3 months and 6 months after operation was (0.28 ± 0.12), (1.37 ± 0.33), (0.58 ± 0.10), (1.36 ± 0.35), (1.39 ± 0.31), (1.37 ± 0.38) g, respectively, indicating significant differences between two sides at 3 weeks and 3 months (P lt; 0.05), but no significant difference at 6 months (P gt; 0.05). The modified Marsland and the LFB staining of spinal cord and superior trunk of brachial plexus showed that the number of neurons, cell nuclear and Nissl body decreased and cell bodies changed from swell ing to shrinkage, dyeing nerve fibers increased, neural axone was thin and myel in sheath was sl ightly stained at each time point in experimental side. The number of motor neurons in cornu anterius medullae spinal is in the experimental side was 84.5% ± 3.2%, 74.4% ± 4.5%, 73.7% ± 3.8% of that in the control side at each time point, respectively. HE staining of biceps brachii detected thatthe muscle denaturation was very serious at 3 months after operation and then recovered. Neural tracing used BDA showed that the closer to the proximal of nerve trunk, the more obviously stained it was of myel in sheath and the more massive of axon at 6 months after operation. And there was almost no myel in and axon stained in musculocutaneous nerve. Conclusion In the rat model of brachial plexus extravertebral foramen nerve root division, the motoneuron in cornu anterius medullae spinal is necrosis rate reaches 20%-30%, and most of the residual neurons are pathologic. The regenerated fibers manifest as insufficient dynamic power and incomplete development, making no sense for the recovery of end organ function. Therefore, the exact mechanism of the recovery of biceps brachial muscle demands further study.

          Release date:2016-09-01 09:17 Export PDF Favorites Scan
        • Study on the Function of Muscarinic Cholinergic Receptor Subtypes of Internal Mammary Artery in Vitro

          Objective To study the method to inhibit perioperative internal mammary artery (IMA) spasm from the perspective of muscarinic receptor, and research the function of muscarinic cholinergic receptor subtypes of IMA. Methods IMA segments in vitro with intact endothelium were obtained from 30 patients who underwent coronary artery bypass grafting (CABG). According to muscarinic receptor antagonists of different concentrations, They were divided into control group (not using receptor antagonist), atropine group (nonselective M receptor antagonist), pirenzepine group (M1 receptor antagonist) and Methoctramine group(M2 receptor antagonist) by random number table. The effects of antagonists on vasodilatation were analyzed, Scott ratio was used to calculate affinity index (pD2) and Schild plot was used to count rivalry index (pA2). Results Acetylcholine (Ach)induced concentrationdependentrelaxation response of IMA segments with intact endothelium precontracted with potassium chloride (KCl). The pD2 was 6.92±0.05. The effects of atropine, pirenzepine and methoctramine on doseresponse curve induced by Ach with intact endothelium were all concentrationdependent. With the increase of the concentration of antagonists, the Achinduced doseresponse curves had a significant shift to right(Plt;0.05). Atropine, pirenzepine and Methoctramine competitively antagonized the reaction of vessel to Ach. The pA2 were 9.62±0.15,7.70±0.08 and 630±0.08, respectively. Conclusion The Achinduced relaxation response of IMA with intact endothelium is concentrationdependent. According to the affinity of different antagonist, IMA in Vitro Achinduced relaxation response is implemented by acting on nonneuronal muscarinic cholinergic M1 receptor subtype.

          Release date:2016-08-30 06:06 Export PDF Favorites Scan
        • Protection of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate receptors

          ObjectiveTo analyze the protective mechanism of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate (NMDA) receptor.MethodsA total of 42 SD rats were randomly assigned to 4 groups: a non-blocking group (n=6), a saline group (n=12), a NMDA receptor blocker K-1024 (25 mg/kg) group (n=12) and a voltage-gated Ca2+ channel blocker nimodipine (0.5 mg/kg) group (n=12). The medications were injected intraperitoneally 30 min before ischemia. The neural function was evaluated. The neuronal histologic change of spinal cord lumbar region, the release of neurotransmitter amino acids and expression of spinal cord neuronal nitric oxide synthase (nNOS) were compared.ResultsAt 8 h after reperfusion, the behavioral score of the K-1024 group was 2.00±0.00 points, which was statistically different from those of the saline group (5.83±0.41 points) and the nimodipine group (5.00±1.00 points, P<0.05). Compared with the saline group and nimodipine group, K-1024 group had more normal motor neurons (P<0.05). There was no significant difference in glutamic acid concentration in each group at 10 min after ischemia (P=0.731). The nNOS protein expression in the K-1024 group was significantly down-regulated compared with the saline group (P<0.01). After 8 h of reperfusion, the expression of nNOS protein in the K-1024 group was significantly up-regulated compared with the saline group (P<0.05).ConclusionK-1024 plays a protective role in spinal cord ischemia by inhibiting NMDA receptor and down-regulating nNOS protein expression; during the reperfusion, K-1024 has a satisfactory protective effect on spinal cord function, structure and biological activity of nerve cells.

          Release date:2020-12-31 03:27 Export PDF Favorites Scan
        5 pages Previous 1 2 3 4 5 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜