The biological pacemaker has become a new strategy in the treatment of severe bradycardias, in which a kind of ideal pacemaker cells is a pivotal factor. Here we reviewed the progress in the differentiation of bone-marrow mesenchymal stem cells and adipose-derived stem cells into pacemaker-like cells by means of gene transfer, chemical molecules, co-culture with other cells and specific culture media, and we also analyzed the potential issues to be solved when they are used as seeding cells of biological pacemaker.
Objective To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced bone marrow mesenchymal stem cells (BMSCs) for enhancement of the biomechanical property of tissue engineered cartilage in vivo. Methods Temperature gradient-guided thermal-induced phase separation was used to fabricate an oriented cartilage extracellular matrix-derived scaffold composed of microtubules arranged in parallel in vertical section. No-oriented scaffold was fabricated by simple freeze-drying. Mechanical property of oriented and non-oriented scaffold was determined by measurement of compressive modulus. Oriented and non-oriented scaffolds were seeded with chondrogenic-induced BMSCs, which were obtained from the New Zealand white rabbits. Proliferation, morphological characteristics, and the distribution of the cells on the scaffolds were analyzed by MTT assay and scanning electron microscope. Then cell-scaffold composites were implanted subcutaneously in the dorsa of nude mice. At 2 and 4 weeks after implantation, the samples were harvested for evaluating biochemical, histological, and biomechanical properties. Results The compressive modulus of oriented scaffold was significantly higher than that of non-oriented scaffold (t=201.099, P=0.000). The cell proliferation on the oriented scaffold was significantly higher than that on the non-oriented scaffold from 3 to 9 days (P lt; 0.05). At 4 weeks, collagen type II immunohistochemical staining, safranin O staining, and toluidine blue staining showed positive results in all samples, but negative for collagen type I. There were numerous parallel giant bundles of densely packed collagen fibers with chondrocyte-like cells on the oriented-structure constructs. Total DNA, glycosaminoglycan (GAG), and collagen contents increased with time, and no significant difference was found between 2 groups (P gt; 0.05). The compressive modulus of the oriented tissue engineered cartilage was significantly higher than that of the non-oriented tissue engineered cartilage at 2 and 4 weeks after implantation (P lt; 0.05). Total DNA, GAG, collagen contents, and compressive modulus in the 2 tissue engineered cartilages were significantly lower than those in normal cartilage (P lt; 0.05). Conclusion Oriented extracellular matrix-derived scaffold can enhance the biomechanical property of tissue engineered cartilage and thus it represents a promising approach to cartilage tissue engineering.
Objective To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. Methods SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 ± 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. Results SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. Conclusion It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.
ObjectiveTo study the immunological properties of osteogenically differentiated umbilical cord blood derived mesenchymal stem cells (UCB-MSCs). MethodsUCB-MSCs were isolated from the umbilical cord vein, and were expanded; the cells at passage 3 were osteogenically induced for 2 weeks in vitro. The expressions of human leukocyte antigen I (HLA-I) and HLA-Ⅱ molecules were observed by flow cytometry analysis before and after osteogenic induction. Peripheral blood T lymphocytes were isolated and cultured with osteoblastic induced or non-osteoblastic induced UCB-MSCs in different cell concentrations of 1×102, 1×103, 1×104, and 1×105 cells/well. The intake value of 3H-thymidine was calculated with luminescence counter. Then T lymphocytes were pretreated with PHA, and co-cultured with osteoblastic induced and non-osteoblastic induced UCB-MSCs as described above. IL-2 was further added to test the reversed effect of T lymphocytes proliferation stimulated by UCB-MSCs. Finally, to investigate whether the immunomodulatory effects on T lymphocytes proliferation depend on direct or indirect cell contact, the Transwell chamber culture system of UCB-MSCs and T lymphocytes was established. ResultsFlow cytometry analysis showed that non-osteoblastic induced UCB-MSCs expressed HLA-I but did not express HLA-Ⅱ; the expression of HLA-Ⅱ increased in osteoblastic induced UCB-MSCs. No T lymphocyte response was stimulated by non-osteoblastic induced UCB-MSCs, but osteoblastic induced UCB-MSCs could stimulate the proliferation of allogeneic T lymphocytes, especially after IFN-γ treatment. Non-osteoblastic induced UCB-MSCs of 1×104 and 1×105 cells/well could suppress the proliferation of T lymphocytes evoked by PHA, and this suppression could be reversed by the addition of IL-2. While osteoblastic induced UCB-MSCs did not have such suppressive effect. The results of the Transwell culture system also showed that non-osteoblastic induced UCB-MSCs could obviously inhibit the proliferation of T lymphocytes, but the osteoblastic induced UCB-MSCs could not. ConclusionThe immunological properties of UCB-MSCs will change accordingly after osteogenic induction, so UCB-MSCs might not be suitable for the seed cells of bone tissue engineering.
Objective To review the advances in repair of spinal cord injury by transplantation of marrow mesenchymal stem cells(MSCs). Methods The related articles in recent years were extensively reviewed,the biological characteristic of MSCs,the experimental and clinical studies on repair of spinal cord injury by transplantation of MSCs,the machanisms of immigration and therapy and the problems were discussed and analysed. Results The experimental and clinical studies demonstrated that the great advances was made in repair of spinal cord injury by transplantation of MSCs. After transplantation, MSCs could immigrate to the position of spinal cord injury, and differentiate into nervelike cells and secrete neurotrophic factors.So it could promote repair of injuryed spinal cord and recovery of neurologicalfunction. Conclusion Transplantation of MSCs was one of effective ways in repair of spinal cord injury, but many problems remain to be resolved.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective Construction of viable tissue engineered bone is one of the most important research fields in the cl inical appl ication of bone tissue engineering, to investigate the function of nerve factors in bone tissue engineering by celldetection in vitro and construction of neurotization tissue engineered bone in vivo. Methods Fifty-four healthy New Zealandwhite rabbits, male or female, weighing 2-3 kg, were involved in this study. Bone marrow mesenchymal stem cells (BMSCs) from the bone marrow of white rabbits were cultured. The second passage of BMSCs were treated with sensory nerve or motor nerve homogenates, using the LG-DMEM complete medium as control. The prol iferation and osteogenic differentiation of the cells were observed and tested by the MTT assay, alkal ine phosphatase (ALP) stain, and collagen type I immunocytochemistry identification. The osteogenic induced BMSCs were inoculated in β tricalcium phosphate (β-TCP) biomaterial scaffold and cultured for 72 hours, then the β-TCP loaded with seed cells was implanted in the rabbit femur with 15 mm bone and periosteum defects. Fifty-four New Zealand white rabbits were randomly divided into three groups (n=18): sensory nerve bundle (group A) or motor nerve bundle (group B) were transplanted into the side groove of β-TCP scaffold, group C was used as a control without nerve bundle transplantation. X-ray detection was performed at the 4th, 8th, and 12th weeks after operation.
Objective To observe effects of the core binding factor α1 (Cbfα1) in its promoting differentiation of the rabbit marrow mesenchym al stem cells (MSCs) into osteoblasts. Methods The rabbit marrow MSCs were isolated and cult ured in vitro and were divided into 3 groups. In the control group, the marr ow MSCs were cultured by DMEM; in the single inducement group, they were cultured by the condition medium (DMEM, 10% fetal bovine serum, dexamethasone 10 mmol/L, vitamin C 50 mg/L, and βGP 10 mmol/L); and in the experimental group , the ywere transfected with AdEasy1/Cbfα1,and then were cultured by the condition m edium. The alkaline phosphatase(ALP) activity and the experission of osteocalcin as the osteoblast markers were measured with the chemohistological and immunohi stochemical methods at 3 days,1,2,3,and 4 weeks after inducement. Results More than 90% MSCs were grown well in vitro. The GFP was positive in MSCs after their being transfectived with AdEasy1/Cbfα1. The ALP activity and the experission of osteocalcin were significantly upregulated in the transfection group compared with those in the single inducement group and the control group at 1, 2, 3, and 4 weeks (Plt;0.05).The mineralized node began to appear at 2 weeks in the experiment al group and the single induction group, but did not appear in control group. Conclusion Cbfα1 can obviously promote differentiation of the rabb it marrow mesenchymal stem cells into the osteoblasts.
Objective To explore the impact of basic fibroblast growth factor (bFGF) and parathyroid hormone-related protein (PTHrP) on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) induced by transforming growth factor β1 (TGF-β1). Methods BMSCs were isolated from 3 healthy Japanese rabbits (2-month-old, weighing 1.6-2.1 kg, male or female), and were clutured to passage 3. The cells were put into pellet culture system and were divided into 5 groups according to different induce conditions: TGF-β1 group (group A), TGF-β1/bFGF group (group B), TGF-β1/21 days bFGF group (group C), TGF-β1/PTHrP group (group D), and TGF-β1/21 days PTHrP group (group E). At the beginning, TGF-β1 (10 ng/mL) was added to all groups, then bFGF and PTHrP (10 ng/mL) were added to groups B and D respectively; bFGF and PTHrP (10 ng/mL) were added to groups C and E at 21 days respectively. The gene expressions of collagen type I (Col I), Col II, Col X, matrix metalloproteinases (MMP)-13, and alkaline phosphatase (ALP) activity were detected once every week for 6 weeks. The 1, 9-dimethylmethylene blue (DMMB) staining was used to observe the extracellular matrix secretion at 6 weeks. Results The expression of Col I in groups C and E showed a significant downward trend after 3 weeks; the expression in group A was significantly higher than that in groups C and E at 4 and 5 weeks (P lt; 0.05), and than that in groups B and D at 3-6 weeks (P lt; 0.05); and significant differences were found between groups B and C at 3 and 4 weeks, and between groups D and E at 3 weeks (P lt; 0.05). After 3 weeks, the expressions of Col II and Col X in groups C and E gradually decreased, and were significantly lower than those in group A at 4-6 weeks (P lt; 0.05). Groups B and D showed no significant difference in the expressions of Col II and Col X at all time points, but there was significant difference when compared with group A (P lt; 0.05). MMP-13 had no obvious expression at all time points in group A; significant differences were found between group B and groups A, C at 3 weeks (P lt; 0.05); and the expression was significantly higher in group D than in groups A and E (P lt; 0.05). ALP activity gradually increased with time in group A; after 4 weeks, ALP activity in groups C and E obviously decreased, and was significantly lower than that in group A (P lt; 0.05); there were significant differences between groups B and C, and between groups D and E at 2 and 3 weeks (P lt; 0.05). DMMB staining showed more cartilage lacuna in group A than in the other groups at 6 weeks. Conclusion bFGF and PTHrP can inhibit early and late chondrogenic differentiation of BMSCs by changing synthesis and decomposition of the cartilage extracellular matrix. The inhibition is not only by suppressing Col X expression, but also possibly by suppressing other chondrogenic protein.
ObjectiveTo investigate the effect of daphnetin (DAP) combined with insulin-like growth factor 1 (IGF-1) gene transfection on chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in rats.MethodsRat ADSCs were isolated and amplified by enzymatic digestion. The third generation ADSCs were treated with IGF-1 gene transfection as experimental group and normal ADSCs as control group. The cells of the two groups were treated with different concentrations of DAP (0, 30, 60, 90 μg/mL), respectively. Cell proliferation was detected by cell counting kit 8 (CCK-8) after cultured for 72 hours. After 14 days, real-time fluorescence quantitative PCR and Western blot were used to detect the mRNA and protein expressions of chondrocyte markers (collagen type Ⅱ and Aggrecan) in each group; and toluidine blue staining and collagen type Ⅱ immunohistochemical staining were performed.ResultsCCK-8 assay showed that with the increase of DAP concentration, the cell absorbance (A) value of the control group and the experimental group increased gradually (P<0.05). At the same DAP concentration, the cell A value of the experimental group was significantly higher than that of the control group (P<0.05). Real-time fluorescence quantitative PCR and Western blot showed that with the increase of DAP concentration, the relative mRNA and protein expressions of collagen type Ⅱ and Aggrecan in the control group did not change significantly, and there was no significant difference among the different concentration groups (P>0.05). But the mRNA and protein expressions of collagen type Ⅱ and Aggrecan in the experimental group increased gradually, and the 60 and 90 μg/mL DAP concentration groups were significantly higher than 0 μg/mL DAP concentration group (P<0.05). At the same DAP concentration, the relative mRNA and protein expressions of collagen type Ⅱ and Aggrecan were significantly higher in the experimental group than in the control group (P<0.05). Toluidine blue staining showed that with the increase of DAP concentration, there was no significant difference in cell staining between the control group and the experimental group. At the same DAP concentration, the cells in the experimental group were slightly darker than those in the control group. Immunohistochemical staining of collagen type Ⅱ showed that with the increase of DAP concentration, there was no significant difference in the cytoplasmic brown-yellow coloring of the cells in the control group. The cytoplasmic brown-yellow coloring of the cells in the experimental group gradually deepened, with 60 and 90 μg/mL DAP concentration groups significantly deeper than 0 μg/mL DAP concentration group. At the same DAP concentration, the color of the cells in the experimental group was significantly deeper than that in the control group.ConclusionDAP can promote the proliferation of ADSCs in rats. The differentiation of ADSCs into chondrocytes induced by DAP alone was slightly, but DAP combined with IGF-1 gene transfection has obvious synergistic effect to promote chondrogenic differentiation of ADSCs.