Several techniques were used to improve 0.3~0.5 mm microvascular anastomosis. These included (1) non-isolation of adventitia, (2) modified two—point anastomosis, (3) clamping only the inflow in veins anastomosis, (4) atraumatic measurement of vascular patency, (5) post operative stimulation by electromagnetic fields, which accelerated the healing of the vessels. The chance of patency following anastomosis in experimental group was significantly much greater than that in the control one (plt;0.001). We have have also used these techniques in 11 patients with fingers replantion or smaller lymphatic anastomosis. All of the operations were successful.
Objective To investigate the changes of lumbar bone histomorphometry after exposure to low frequency pulsed electromagnetic fields (PEMFs), and to further understand the effect of PEMFs on osteoporosis (OP) in ovariectomizedOP rats. Methods Sixty-six 3-month-old Sprague Dawley rats were randomly divided into 4 groups: group A(n=12), groupB (n=12), group C (n=12), and group D (n=30). In group A, the ovaries were not resected as sham-ovariectomy; in groupsB, C, and D, the ovaries were resected. At 12 weeks after ovariectomy, the rats were exposed to PEMFs at 8 Hz, 3.8 mT, and 40 minutes/ day for 30 days in group B; the rats were administered with premarin [0.065 mg/(kg·d) by gavage for 30 days] in group C; in group D, the rats were housed as ovariectomy control. The hair and activity of rats were observed; the levels of serum estradiol were determined. At 30 days after intervention, all rats were sacrificed to harvest the L4 vertebrae for bone histomorphometry. Results General observation showed hair loss and decreased activity in group D, and no abnormal appearances in groups A, B, and C. The level of serum estradiol in group A was significantly higher than that in group D [(54.93 ± 23.52) pg/mL vs. (31.99 ± 23.45) pg/mL] (t=2.345, P=0.029). Histological observation showed thinness of sclerotin, bigger medullary cavity, and sparse and thinner bone trabecula in group D; uniform bone trabecula with no breakage in groups A, B, and C at 30 days after intervention. The ratio of trabecular bone area in group B was significantly higher than that in group D (P lt; 0.05); it was higher than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular thickness in group B was significantly higher than that in group D (P lt; 0.05), but it was lower than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular number in group B was significantly lower than that in group D (P lt; 0.05), but it was higher than that in groups A and C, showing no significant difference (P gt; 0.05). The trabecular separation in group B was higher than that in group D and lower than that in groups A and C, showing no significant difference (P gt; 0.05). Conclusion PEMFs at 8 Hz and 3.8 mT can significantly improve the character of bone microstructure in ovariectomized OP rats, increase the ratio of bone trabecular area and trabecular thickness, and decrease the trabecular number.
According to the coupling relationship of electromagnetic field and acoustic field when electromagnetic field irradiates low conductivity objects, we carried out a study on the magnetoacoustic effect and thermoacoustic effect in pulsed magnetic excitation. In this paper, we provide the pressure wave equation in pulsed magnetic excitation based on the theory of electromagnetic field and acoustic wave propagation. A 2-dimensional coil carrying current and a circular thin sheet model were constructed to simulate the physical imaging environment. The transient electromagnetic field was simulated using finite element method. Numerical studies were conducted to simulate the pressures excited by magnetoacoustic effect and thermoacoustic effect according to the result of electromagnetic simulation. It was shown that the thermoacoustic effect played a leading role in the low conductivity objects on the microsecond Gauss pulsed magnetic excitation, and thermoacoustic effect and magnetoacoustic effect coexisted on the microsecond Gauss pulsed magnetic field and 0.2 T static magnetic field excitation. This study lays the foundation for the further application of magnetoacoustic tomography with magnetic induction and magnetically mediated thermoacoustic imaging.
Objective To study major influential factors of the micturition alert device dedicated to neurogenic bladders for the product design and cl inical appl ication of the device. Methods One ferrite permanent magnet with thickness and diameter of 3 mm and 10 mm, respectively, and three NdFeB permanent magnets with the thickness of 3 mm and diameter of 10, 15 and 20 mm, respectively, were used. The effects of thickness of the abdominal wall as well as the position and type of permanent magnets on the micturition alert device dedicated to neurogenic bladders were measured in vitro simulated test, when the abdominal wall was set to 2, 3, 4, 5, 6, 7, 8 and 9 cm, respectively, and the position of permanent magnets was 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 cm, respectively. The effect of the geomagnetic field on the device was measured under the condition that the thickness of the simulated abdominal wall was set to 2, 3, 4 and 5 cm, respectively,and the position of permanent magnets was 2, 3, 4, 5, 6, 7, 8, 9 and 10 cm, respectively. Results The value showed inthe warning unit was positively correlated with the position of the ferrite permanent magnet only when the thickness ofthe simulated abdominal wall was 2 cm (r=0.632, P lt; 0.05). The correlation between the value of the warning unit andthe position of NdFeB permanent magnets was significant (r gt; 0.622, P lt; 0.05), which was intensified with the increasingdiameter of NdFeB permanent magnets, but weakened with the increasing thickness of the simulated abdominal wall. The effect of the geomagnetic field was correlated with the exposition of the body, the position of the permanent magnet and the thickness of the abdominal wall. Conclusion The major influential factors of the micturition alert device dedicated to neurogenic bladder include the magnetism and location of the permanent magnet, the thickness of the abdominal wall and the geomagnetic field. These factors are correlated with and affect each other. Reasonable allocation of these factors may optimize the device.
In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.
With the acceleration of the aging in the world and our society, osteoarthritis has become a health concern for patients and health workers. At present, its treatment mainly relies on drug treatment, surgical treatment and rehabilitation. As a safe, non-invasive and simple treatment, pulsed electromagnetic field (PEMF) therapy has been used in clinical treatment of osteoporosis, promoting fracture healing and improving symptoms of osteoarthritis. However, the mechanism of PEMF in the treatment of knee osteoarthritis is still unclear. This paper reviews the effects of PEMF on apoptosis, cytokines, cartilage and subchondral bone in knee osteoarthritis in animal experiments, and the changes of chondrocyte morphology and extracellular matrix in cell experiments, aiming to enable medical workers to better understand the status and development of PEMF in the treatment of knee osteoarthritis in basic experimental researches.
The present research is to investigate the time effect of sinusoidal electromagnetic fields (SEMFs) at different exposure time on the biomechanical properties in rats, and to find a best time for improving biomechanical properties. Forty female SD rats were randomly divided into five groups, i.e. control group, 45 min SEMFs group, 90 min SEMFs group, 180 min SEMFs group, and 270 min SEMFs group. In addition to the control group, other groups were exposed to 50 Hz and 0.1 mT magnetic field every day for the corresponding time periods. After eight weeks, bone mineral density (BMD), bone biomechanics, bone tissue morphology, micro-CT and pathological examination were performed. The results showed that there was no abnormal pathological finding in the experimental groups. In the 90 min SEMFs group, BMD, femur maximum load, elastic modulus, yield strength, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular area (Tb.Ar) percentage were all significantly higher than those in the control group (P<0.01), and trabecular separation (Tb.Sp) was significantly lower than that of the control group (P<0.01). However, for other experimental groups, some indices showed statistical significance compared to the control group (P<0.05), but some did not (P>0.05). This study showed that under 50 Hz and 0.1 mT SEMFs, 90 min is the best time that can effectively increase bone mineral density, improve the bone tissue microstructure organization and the biomechanical properties.
ObjectiveTo investigate whether signal molecule mitogen-activated protein kinases (MAPKs) involves in the process of the mineralization and maturation of rat calvarial osteoblasts promoted by 50 Hz, 0.6 mT pulsed electromagnetic fields. MethodsRat calvarial osteoblasts were obtained by enzyme digestion from the skull of 6 neonatal Wistar rats of SPF level. The primary osteoblasts were treated in 50 Hz and 0.6 mT pulsed electromagnetic fields for 0, 5, 10, 20, 40, 60, and 120 minutes; the protein expression of phosphorylated MAPKs was detected by Western blot. The osteoblasts were randomly divided into group A (control group), group B (low frequency pulse electromagnetic fields treatment group), group C (SB202190 group), and group D (SB202190+low frequency pulse electromagnetic fields treatment group); the alkaline phosphatase (ALP) activities were tested after corresponding treatment for 1, 4, and 7 days. The corresponding treated more than 90% confluenced osteoblasts were cultured under condition of osteogenic induction, then ALP staining and alizarin red staining were carried out at 9 and 12 days respectively. ResultsThe results of Western blot showed that there was no significant changes in the protein expressions of phosphorylated level of extracellular signal-related kinases 1/2 and c-Jun amino N-terminal kinases 1/2 in 50 Hz, 0.6 mT pulsed electromagnetic fields P>0.05), but the phosphorylated level of p38 began to increase at 5 minutes, peaked at 40 minutes, then gradually decreased, and it was significantly higher at 5-120 minutes than at 0 minute (P<0.05). After the activities of p-p38 was inhibited by inhibitor SB202190, the ALP activities, positive colonies and area of ALP and calcified nodules of group B were significantly higher than groups A, C, and D (P<0.05). Conclusionp38 is one of the signal molecules involved in the process of the mineralization and maturation of rat calvarial osteoblasts promoted by 50 Hz, 0.6 mT pulsed electromagnetic fields.
One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.
We investigated the effects and optimal treatment frequency of pulsed electromagnetic fields (PEMFs) on postmenopausal osteoporosis (PMO). A comparison was performed with the cyclical alendronate and a course of PEMFs in the treatment for postmenopausal osteoporosis on bone mineral density (BMD), pain intensity and balance function. There was no significant difference between the two groups on mean percentage changes from baseline of BMD within 24 weeks after random treatments (P≥0.05). However, at the ends of 48 weeks and 72 weeks, the BMD of the PEMFs group were significantly lower than that of the alendronate group (P<0.05). No significant difference was detected between the two groups with regard to treatment effects on Visual Analogue Scale score, the Timed Up & Go Test and Berg Balance Scale score. Compared with cyclical alendronate, a course of PEMFs was as effective as alendronate in treating PMO for at least 24weeks. So its optimal treatment frequency for PMO may be one course per six months.