To locate the nuclei in hematoxylin-eosin (HE) stained section images more simply, efficiently and accurately, a new method based on distance estimation is proposed in this paper, which shows a new mind on locating the nuclei from a clump image. Different from the mainstream methods, proposed method avoids the operations of searching the combined singles. It can directly locate the nuclei in a full image. Furthermore, when the distance estimation built on the matrix sequence of distance rough estimating (MSDRE) is combined with the fact that a center of a convex region must have the farthest distance to the boundary, it can fix the positions of nuclei quickly and precisely. In addition, a high accuracy and efficiency are achieved by this method in experiments, with the precision of 95.26% and efficiency of 1.54 second per thousand nuclei, which are better than the mainstream methods in recognizing nucleus clump samples. Proposed method increases the efficiency of nuclear location while maintaining the location's accuracy. This can be helpful for the automatic analysis system of HE images by improving the real-time performance and promoting the application of related researches.
Physiological studies reveal that rats rely on multiple spatial cells for spatial navigation and memory. In this paper, we investigated the firing mechanism of spatial cells within the entorhinal-hippocampal structure of the rat brain and proposed a spatial localization model for mobile robot. Its characteristics were as follows: on the basis of the information transmission model from grid cells to place cells, the neural network model of place cells interaction was introduced to obtain the place cell plate with a single-peaked excitatory activity package. Then the solution to the robot’s position was achieved by establishing a transformation relationship between the position of the excitatory activity package on the place cell plate and the robot’s position in the physical environment. In this paper, simulation experiments and physical experiments were designed to verify the model. The experimental results showed that compared with RatSLAM and the model of grid cells to place cells, the positioning performance of the model in this paper was more accurate, and the cumulative error in the long-time path integration process of the robot was also smaller. The research results of this paper lay a foundation for the robot navigation method that mimics the cognitive mechanism of rat brain.
ObjectiveTo explore technical essentials and safety of laparoscopic cholecystectomy (LC) guided by gallbladder ampulla localization on an imaginary clock for cholecystitis.MethodsA retrospective study of 8 707 continuous patients with mild cholecystitis who underwent LC from July 1998 to February 2018 at a single institution was conducted. Among them, 3 168 patients were treated by the traditional LC from July 1998 to February 2007 (a traditional LC group), 5 539 patients were treated by the LC with the guidance of the gallbladder ampulla localization on an imaginary clock from March 2007 to February 2018 (a gallbladder ampulla localization group). The conversion to open surgery, bile duct injury, return to the operating room due to postoperative massive abdominal bleeding, bile leakage without bile duct injury, operative time, intraoperative blood loss, and postoperative hospital stays were compared between the traditional LC group and the gallbladder ampulla localization group.ResultsThere were no significant differences in the gender, age, course of disease, and type of cholecystitis between these two groups (P>0.050). The rates of conversion to open surgery, bile duct injury, return to the operating room due to postoperative massive abdominal bleeding, bile leakage without bile duct injury and the operative time, intraoperative blood loss and postoperative hospital stays in the traditional LC group were 3.00% (95/3 168), 0.13% (4/3 168), 0.09% (3/3 168), 0.03% (1/3 168), (43.6±12.6) min, (18.7±3.3) mL, (3.6±2.7) d, respectively, which in the gallbladder ampulla localization group were 0 (0/5 539), 0 (0/5 539), 0 (0/5 539), 0 (0/5 539), (32.2±10.5) min, (12.4±3.5) mL, (3.5±2.8) d, respectively. The differences of conversion to open surgery, bile duct injury, return to the operating room due to postoperative massive abdominal bleeding rates, and the operative time and intraoperative blood loss were statistically significant between these two groups (P<0.050). The differences of the bile leakage without bile duct injury rate and postoperative hospital stays were not statistically significant between the two groups (P>0.050).ConclusionThis study shows that gallbladder ampulla localization on an imaginary clock is useful for ductal identification so as to reduce bile duct injury and improve safety of LC in case of no conversion to open surgery.
Epilepsy is a clinical syndrome characterized by recurrent epileptic seizures caused by various etiologies. Etiological diagnosis and localization of the epileptogenic focus are of great importance in the treatment of epilepsy. Positron emission tomography-computed tomography (PET-CT) technology plays a significant role in the etiological diagnosis and localization of the epileptogenic focus in epilepsy. It also guides the treatment of epilepsy, predicts the prognosis, and helps physicians intervene earlier and improve the quality of life of patients. With the continuous development of PET-CT technology, more hope and better treatment options will be provided for epilepsy patients. This article will review the guiding role of PET-CT technology in the diagnosis and treatment of epilepsy, providing insights into its application in etiological diagnosis, preoperative assessment of the condition, selection of treatment plans, and prognosis of epilepsy.
Accurate source localization of the epileptogenic zone (EZ) is the primary condition of surgical removal of EZ. The traditional localization results based on three-dimensional ball model or standard head model may cause errors. This study intended to localize the EZ by using the patient-specific head model and multi-dipole algorithms using spikes during sleep. Then the current density distribution on the cortex was computed and used to construct the phase transfer entropy functional connectivity network between different brain areas to obtain the localization of EZ. The experiment result showed that our improved methods could reach the accuracy of 89.27% and the number of implanted electrodes could be reduced by (19.34 ± 7.15)%. This work can not only improve the accuracy of EZ localization, but also reduce the additional injury and potential risk caused by preoperative examination and surgical operation, and provide a more intuitive and effective reference for neurosurgeons to make surgical plans.
ObjectiveTo explore the feasibility and safety of using indocyanine green combined with autologous blood and methylene blue for localization of small lung nodules during thoracoscopic wedge resection. MethodsPatients who underwent CT-guided percutaneous lung puncture injection of localization agents to locate lung nodules at the First Affiliated Hospital of Fujian Medical University from November 2023 to January 2024 were selected. Under thoracoscopy, lung nodules were located by white light mode, fluorescence mode, or near-infrared mode and wedge resection was performed. The feasibility of using indocyanine green combined with autologous blood and methylene blue for localization of small lung nodules was preliminarily verified by evaluating whether the localization agent concentrated around the nodules, and the safety of this method was verified by analyzing the incidence of adverse reactions during patient puncture and surgery. ResultsA total of 30 patients with lung nodules were included, including 10 males and 20 females, with an average age of (55.5±11.2) years. In 26 patients, the amount of localization agent used was moderate, the localization agent concentrated around the nodules, and successful precise localization of small lung nodules was achieved. In 4 patients, due to excessive use of localization agent, the marker was diffuse with pleural staining. The overall localization success rate was 86.7%, and when the injection volume of localization agent was 0.2-0.5 mL, the localization success rate was 100.0%. All patients successfully completed thoracoscopic wedge resection and found nodule lesions, with negative margins and a distance from the margin to the lesion that met the requirements. There were no complications. ConclusionThoracoscopic surgery using indocyanine green combined with autologous blood and methylene blue for localization of small lung nodules is safe and feasible.
ObjectiveTo systematically evaluate the application effect of CT-guided Hook-wire localization and CT-guided microcoil localization in pulmonary nodules surgery. MethodsThe literatures on the comparison between CT-guided Hook-wire localization and CT-guided microcoil localization for pulmonary nodules were searched in PubMed, EMbase, The Cochrane Library, Web of Science, Wanfang, VIP and CNKI databases from the inception to October 2021. Review Manager (version 5.4) software was used for meta-analysis. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of studies.ResultsA total of 10 retrospective cohort studies were included, with 1 117 patients including 473 patients in the CT-guided Hook-wire localization group and 644 patients in the CT-guided microcoil localization group. The quality of the studies was high with NOS scores>6 points. The result of meta-analysis showed that the difference in the localization operation time (MD=0.14, 95%CI ?3.43 to 3.71, P=0.940) between the two groups was not statistically significant. However, the localization success rate of the Hook-wire group was superior to the microcoil group (OR=0.35, 95%CI 0.17 to 0.72, P=0.005). In addition, in comparison with Hook-wire localization, the microcoil localization could reduce the dislocation rate (OR=4.33, 95%CI 2.07 to 9.08, P<0.001), the incidence of pneumothorax (OR=1.62, 95%CI 1.12 to 2.33, P=0.010) and pulmonary hemorrhage (OR=1.64, 95%CI 1.07 to 2.51, P=0.020). ConclusionAlthough Hook-wire localization is slightly better than microcoil localization in the aspect of the success rate of pulmonary nodule localization, microcoil localization has an obvious advantage compared with Hook-wire localization in terms of controlling the incidence of dislocation, pneumothorax and pulmonary hemorrhage. Therefore, from a comprehensive perspective, this study believes that CT-guided microcoil localization is a preoperative localization method worthy of further promotion.
Objective To assess the clinical value of preoperative localization coupled with computed tomography (CT) three-dimensional reconstruction in pulmonary nodule-centered uniportal thoracoscopic combined subsegmental/segmental resection. Methods The clinical data of 30 patients of combined subsegmental/segmental resection in our hospital from December 2019 to October 2021 were retrospectively collected. There were 19 males and 11 females with the mean age of 56.4 (32.0-71.0) years. The pulmonary nodules were located by CT-guided injection of glue before operation. The three-dimensional reconstruction image and operation planning were carried out by Mimics 21.0 software. ResultsThe operations were all successfully performed, and there was no conversion to open thoracotomy or lobectomy. The mean tumor diameter was 11.6±3.5 mm, the mean distance between the nodule and the visceral pleura was 13.6±5.6 mm, the mean width of the actual cutting edge was 25.0±6.5 mm, the mean operation time was 110.2±23.8 min, the mean number of lymph node dissection stations was 6.5±2.4, the mean amount of intraoperative bleeding was 50.8±20.3 mL, the mean retention time of thoracic catheter was 3.2±1.1 d, and the mean postoperative hospital stay was 4.5±1.7 d. There was 1 patient of subcutaneous emphysema, 1 patient of atrial fibrillation and 1 patient of blood in sputum. Conclusion Preoperative CT-guided injection of medical glue combined with CT three-dimensional reconstruction of pulmonary bronchus and blood vessels is safe and feasible in pulmonary nodule-centered uniportal thoracoscopic combined subsegmental/segmental resection, which ensures the surgical margin and reserves lung tissues.
ObjectiveTo explore the application value of CT-guided microcoil localization in pulmonary nodule (diameter≤15 mm) surgery.MethodsThe clinical data of 175 patients with pulmonary nodules who underwent single utility port video-assisted thoracoscopic surgery at Nanjing Drum Tower Hospital from August 2018 to December 2019 were retrospectively analyzed. According to whether CT-guided coil localization was performed before operation, they were divided into a locating group and a non-locating group. There were 84 patients (34 males, 50 females, aged 57.8±8.8 years) in the locating group and 91 patients (46 males, 45 females, aged 57.6±10.8 years) in the non-locating group. The localization success rate, localization time, incidence of complications, surgical and postoperative conditions were analyzed between the two groups.ResultsAll 84 patients in the locating group were successfully located, and localization time was 19.0±3.6 minutes. Among them, 19 (22.6%) patients had a small pneumothorax, 4 (4.8%) pulmonary hemorrhage and 2 (2.4%) coil shift; 6 (7.1%) patients had mild pain, 3 (3.6%) moderate pain and 1 (1.2%) severe pain. Sex (P=0.181), age (P=0.673), nodule location (P=0.167), nature of lesion (P=0.244), rate of conversion to thoracotomy (P=0.414), rate of disposable resection of nodules (P=0.251) and postoperative hospital stay (P=0.207) were similar between the two groups. There were significant differences in nodule size (P<0.001), nature of nodule (P<0.001), the shortest distance from nodule to pleura (P<0.001), operation time (P<0.001), lung volume by wedge resection (P=0.031), number of staplers (P<0.001) and total hospitalization costs (P<0.001) between the two groups.ConclusionCT-guided microcoil localization has the characteristics of high success rate, and is simple, practicable, effective, safe and minimally invasive. Preoperative CT-guided microcoil localization has important clinical application value for small pulmonary nodules, especially those with small size, deep location and less solid components. It can effectively shorten the operation time, reduce surgical trauma and lower hospitalization costs, which is a preoperative localization technique worthy of popularization.
Objective To explore the causal relationship between the Collagen VI (COL6) family proteins COL6A1, A2, and A3 and bronchiectasis using the Mendelian randomization (MR) method.MethodsThe primary analysis was conducted using MR combined with summary-data-based Mendelian randomization (SMR) analysis. COL6 family proteins were used as exposure data, and bronchiectasis was used as outcome data. Cis-protein quantitative trait locus (cis-pQTL) data were extracted for analysis, and the results were meta-analyzed. Subsequently, COL6A3-cis-pQTL data from the UK Biobank plasma proteome study were used for further validation. Colocalization analysis was also performed to further explore the association between COL6 proteins and bronchiectasis.Results MR and SMR results revealed a negative causal relationship between COL6A3 and bronchiectasis (p-MRmeta = 0.005, OR = 0.30; p-SMRmeta = 0.004, OR = 0.26). The validation phase also confirmed the negative causal relationship between COL6A3 and bronchiectasis (p-MRmeta = 0.000007, OR = 0.27; p-SMRmeta = 0.0003, OR = 0.29). Colocalization analysis supported the presence of a shared causal variant (rs972974) between COL6A3 and bronchiectasis (PP.H4 = 0.967/0.876).Conclusion There is an inverse causal relationship between COL6A3 and bronchiectasis. Low expression of COL6A3 increases the risk of developing bronchiectasis, making COL6A3 a potential biomarker and therapeutic target for drug development in bronchiectasis.