ObjectiveTo evaluate the safety and application value of three-dimensional reconstruction for localization of pulmonary nodules in thoracoscopic lung wedge resection.MethodsThe clinical data of 96 patients undergoing thoracoscopic lung wedge resection in our hospital from January 2019 to August 2020 were retrospectively reviewed and analyzed, including 30 males and 66 females with an average age of 57.62±12.13 years. The patients were divided into two groups, including a three-dimensional reconstruction guided group (n=45) and a CT guided Hook-wire group (n=51). The perioperative data of the two groups were compared.ResultsAll operations were performed successfully. There was no statistically significant difference between the two groups in the failure rate of localization (4.44% vs. 5.88%, P=0.633), operation time [15 (12, 19) min vs. 15 (13, 17) min, P=0.956], blood loss [16 (10, 20) mL vs. 15 (10, 19) mL, P=0.348], chest tube placement time [2 (2, 2) d vs. 2 (2, 2) d, P=0.841], resection margin width [2 (2, 2) cm vs. 2 (2, 2) cm, P=0.272] or TNM stage (P=0.158). The complications of CT guided Hook-wire group included pneumothorax in 2 patients, hemothorax in 2 patients and dislodgement in 4 patients. There was no complication related to puncture localization in the three-dimensional reconstruction guided group.ConclusionBased on three-dimensional reconstruction, the pulmonary nodule is accurately located. The complication rate is low, and it has good clinical application value.
Objective To compare the effectiveness of poly ether ether ketone (PEEK) localization marker combined with mixed reality technology versus color doppler ultrasound guidance for the vessel localization of anterolateral thigh perforator flap. Methods A retrospective analysis was conducted on 40 patients with tissue defects after oral cancer resection who underwent repair using the anterolateral thigh perforator flap between January 2022 and June 2023. According to the different intraoperative positioning methods of the anterolateral thigh perforator flap, they were randomly divided into PEEK group [using PEEK localization marker combined with mixed reality technology based on CT angiography (CTA) data] and color ultrasound group (using color ultrasound guidance), with 20 cases in each group. There was no significant difference in gender, age, etiology, and disease duration between the two groups (P>0.05). The number of perforator vessels identified in the two groups of regions of interest was recorded, and compared them with the intraoperative actually detected number to calculate the success identifying rate of perforator vessels; the distance between the perforating point and the actual puncture point was measured, the operation time of the two groups of flaps was recorded. ResultsIn the PEEK group, 32 perforator vessels were identified, 34 were detected by intraoperative exploration, and the success identifying rate was 94.1% (32/34); in the color ultrasound group, 29 perforator vessels were identified, 33 were detected by intraoperative exploration, and the success identifying rate was 87.8% (29/33); there was a significant difference in the success identifying rate between the two groups (P<0.05). The distance between the perforating point and the actual puncture point and the operation time in PEEK group were significantly shorter than those in color ultrasound group (P<0.05). Patients in both groups were followed up 6-30 months, with a median of 17 months; there was no significant difference in follow-up time between the two groups (P>0.05). In the PEEK group, there was 1 case of flap necrosis at the distal edge and delayed healing after trimming and dressing change. In the color ultrasound group, there was 1 case of flap necrosis at 7 days after operation and pectoralis major myocutaneous flap was selected for repair after removal of the necrotic flap. In the rest, the flap survived and the incision healed by first intention. Donor site infection occurred in 1 case in PEEK group and healed after anti-inflammatory treatment. The maxillofacial appearance of the two groups was good, the flap was not obviously bloated, and the patients were satisfied with the repair effect. Conclusion Compared with the traditional color ultrasound guidance, the PEEK localization marker combined with mixed reality technology based on CTA data in vessel localization of anterolateral thigh perforator flap has higher success identifying rate and positioning accuracy, and the flap production time is shorter, which has high clinical application value.
The cardiac conduction system (CCS) is a set of specialized myocardial pathways that spontaneously generate and conduct impulses transmitting throughout the heart, and causing the coordinated contractions of all parts of the heart. A comprehensive understanding of the anatomical characteristics of the CCS in the heart is the basis of studying cardiac electrophysiology and treating conduction-related diseases. It is also the key of avoiding damage to the CCS during open heart surgery. How to identify and locate the CCS has always been a hot topic in researches. Here, we review the histological imaging methods of the CCS and the specific molecular markers, as well as the exploration for localization and visualization of the CCS. We especially put emphasis on the clinical application prospects and the future development directions of non-destructive imaging technology and real-time localization methods of the CCS that have emerged in recent years.
ObjectiveTo summarize the current common clinical laparoscopic gastrointestinal tumor surgical localization methods, and to provide reference for clinicians to choose reasonable localization methods. MethodThe domestic and foreign literatures related to laparoscopic gastrointestinal tumor surgical localization methods were searched and reviewed. ResultsThe common localization methods for laparoscopic gastrointestinal tumor surgery were imaging localization, preoperative endoscopic localization, intraoperative endoscopic localization and intraoperative fluorescence localization, among which abdominal enhanced CT and endoscopic-related localization methods were the most commonly used localization methods in clinical practice at present. ConclusionA variety of methods are available for surgeons to choose from, and the precise localization of tumors is better facilitated by combining multiple methods.
Epilepsy is a clinical syndrome characterized by recurrent epileptic seizures caused by various etiologies. Etiological diagnosis and localization of the epileptogenic focus are of great importance in the treatment of epilepsy. Positron emission tomography-computed tomography (PET-CT) technology plays a significant role in the etiological diagnosis and localization of the epileptogenic focus in epilepsy. It also guides the treatment of epilepsy, predicts the prognosis, and helps physicians intervene earlier and improve the quality of life of patients. With the continuous development of PET-CT technology, more hope and better treatment options will be provided for epilepsy patients. This article will review the guiding role of PET-CT technology in the diagnosis and treatment of epilepsy, providing insights into its application in etiological diagnosis, preoperative assessment of the condition, selection of treatment plans, and prognosis of epilepsy.
The use of echocardiography ventricle segmentation can obtain ventricular volume parameters, and it is helpful to evaluate cardiac function. However, the ultrasound images have the characteristics of high noise and difficulty in segmentation, bringing huge workload to segment the object region manually. Meanwhile, the automatic segmentation technology cannot guarantee the segmentation accuracy. In order to solve this problem, a novel algorithm framework is proposed to segment the ventricle. Firstly, faster region-based convolutional neural network is used to locate the object to get the region of interest. Secondly, K-means is used to pre-segment the image; then a mean shift with adaptive bandwidth of kernel function is proposed to segment the region of interest. Finally, the region growing algorithm is used to get the object region. By this framework, ventricle is obtained automatically without manual localization. Experiments prove that this framework can segment the object accurately, and the algorithm of adaptive mean shift is more stable and accurate than the mean shift with fixed bandwidth on quantitative evaluation. These results show that the method in this paper is helpful for automatic segmentation of left ventricle in echocardiography.
【Abstract】ObjectiveTo evaluate the localized biopsy of nonpalpable breast lesions (NPBLs) and its role in the early diagnosis and treatment of breast cancer. MethodsOne hundred and fifty-eight NPBLs from a series of 141 women detected by mammography were resected with wire localization technique. ResultsForty-two lesions (26.6%, 42/158) in 42 patients were diagnosed with malignant result, including 12(28.6%) patients with stage 0 breast cancer, 24(57.1%) with stageⅠ, 2(4.8%) with stage Ⅱ and 4(9.5%) with stage Ⅲ disease according to American Joint Committee on Cancer (AJCC) staging system(the 6th edition). The contralateral axillary lymph nodes metastasis were found in only one (2.4%) patient with stage Ⅲ disease and the other fortyone patients remained free of recurrent disease at a median follow-up of 31 months.ConclusionThe results showed that the most nonpalpable breast cancers detected by mammography were earlystage breast cancers and had good prognosis. The NPBLs should get a localized biopsy in order to facilitate the early diagnosis and treatment of nonpalpable breast cancers.
Abstract: Objective To explore the approach of clinical diagnosis and treatment strategy for patients with small pulmonary nodules (SPN)≤ 1.0 cm in size on CT. Methods We retrospectively analyzed the clinical records of 39 patients with SPN less than 1.0 cm in size who underwent lung resection at Nanjing Drum Tower Hospital from January 2005 to June 2011. There were 23 males and 16 females. Their age ranged from 31-74 (51.0±7.4) years. Nine patients had cough and sputum and other patients had no symptom. All the patients were found to have SPN less than 1.0(0.8±0.1)cm in size but not associated with hilum and mediastinal lymphadenectasis in chest CT and X-ray. The results of their sputum cytology and electronic bronchoscope were all negative. All the patients had no histologic evidence and underwent pulmonary function test prior to operation. Eleven patients had positron emission tomography/computer tomography (PET/CT)or single-photon emission computed tomography (SPECT)which was all negative. Thirteen patients underwent video-assisted minithoracotomy(VAMT) and 26 patients underwent video-assisted thoracoscopic surgery (VATS). Results The average operation time was 121.0±48.0 min. Patients after partial lung resection were discharged 4~5 d postoperatively, and patients after lobectomy were discharged 7 d postoperatively. All the patients had no postoperative complications. Twenty one patients were identified as lung malignancy by postoperative pathology, including 9 patients with adenocarcinoma, 7 patients with bronchioloalveolar carcinoma, 1 patient with small cell lung carcinoma, and 4 patients with pulmonary metastasis. Eighteen patients had benign lesions including 4 patients with sclerosing hemangioma, 4 patients with inflammatory pseudotumor, 2 patients with pneumonia, 3 patients with granuloma, 2 patients with tuberculosis, and 3 patients with pulmonary lymph node hyperplasia. The SPN were located in left upper lobe in 11 patients, left lower lobe in 6 patients, right upper lobe in 14 patients, right middle lobe in 1 patient, and right lower lobe in 7 patients. Conclusion The diagnosis of SPN ≤1.0 cm in size on CT should consider malignance in the first step to avoid treatment delay. Patients may have a 3-month observation period to receive selective antibiotic treatment, chest CT and X-ray review after 2 to 4 weeks. CT- guided hook-wire fixation is useful to help in precise lesion localization for surgical resection. VATS and VAMT are common and effective methods for the diagnosis and treatment for SPN.
Objective To investigate the causal effect of coronavirus disease 2019 (COVID-19) on idiopathic pulmonary fibrosis (IPF). Methods Genome-wide association studies (GWAS) data were sourced from the COVID-19 Host Genetics Initiative and published research. We employed: ① linkage disequilibrium score regression to estimate heritability of individual traits and genetic correlations between COVID-19 and IPF; ② multi-trait analysis of GWAS to identify genetic loci associated with COVID-19 and IPF; ③ Mendelian randomization (MR) to assess causal effect of COVID-19 on IPF; ④ colocalization analysis to identify shared causal variants. Results ① Three COVID-19 phenotypes showed significant positive genetic correlations with IPF (P<0.05); ② Multi-trait analysis of GWAS identified loci jointly associated with COVID-19 and IPF; ③ MR indicated that COVID-19 hospitalization may increase IPF risk (P=0.006); ④ Two causal variants were identified: rs12585036 (posterior probability>0.8, mapped to ATP11A) and rs12610495 (posterior probability>0.8, mapped to DPP9). Conclusions COVID-19 hospitalization may increase IPF risk through inflammatory pathways, providing new insights for managing COVID-19-related pulmonary diseases.
With the wide utilization of high-resolution computed tomography (HRCT) in the lung cancer screening, patients detected with pulmonary ground-glass nodules (GGNs) have increased over time and account for a large proportion of all thoracic diseases. Because of its less invasiveness and fast recovery, video-assisted thoracoscopic surgery (VATS) is currently the first choice of surgical approach to lung nodule resection. However, GGNs are usually difficult to recognize during VATS, and failure of nodule localization would result in conversion to thoracotomy or extended lung resection. In order to cope with this problem, a series of approaches for pulmonary nodule localization have developed in the last few years. This article aims to summarize the reported methods of lung nodule localization and analyze its corresponding pros and cons, in order to help thoracic surgeons to choose appropriate localization method in different clinical conditions.