Objective To observe the therapeutic effect of thermosensitive hydrogel containing curcumin-vitamin E (VE) complex (hereinafter referred to as “curcumin-VE hydrogel”) on radiation-induced oral mucositis in mice. Methods Curcumin-VE hydrogel was prepared using the synthesized curcumin-VE complex as the carrier and poloxam as the substrate. The structure of curcumin-VE complex was characterized by Fourier transform infrared spectrometer, the microstructure of curcumin-VE hydrogel was determined by scanning electron microscope, and the gelation temperature was determined by rheometer, gel swelling and degradation were tested and gel adhesion was determined using a universal testing machine. Thirty healthy male BALB/C mice with specific pathogen free grade were randomly divided into three groups, with ten mice in each group. The radiation group and radiation+hydrogel group were modeled by a single high dose of radiation (25 Gy), while the control group had anesthesia but no radiation. The control group and radiation group were given daily feed and water 7 days after radiation. In addition to daily feed and water, the radiation+hydrogel group was given curcumin-VE hydrogel twice a day. The mice were sacreficed on the 8th day after radiation. The weight changes of each group were recorded after radiation. The ulceration area of tongue was measured by toluidine blue. The tongue of mouse were pathologically observed. The activities of superoxide dismutase, catalase (CAT), and glutathione peroxidase and the level of malondialdehyde in tongue tissue were determined. The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in tongue tissue were determined by enzyme linked immunosorbent assay. The distribution and positive expression of phosphorylated histone H2AX (γ-H2AX) and nuclear factor-erythroid 2-related factor 2 were determined by immunohistochemistry. Results Curcumin-VE hydrogel had a porous network structure and the gelation temperature was 30℃, the swelling rate was close to 300%, the gel degradation rate was up to 95% after 48 h, and the adhesion strength was 12.748 kPa. Compared with the radiation group, the weight of mice in the radiation+hydrogel group increased (P<0.05), the ulcer area decreased (P<0.05); the activity of CAT increased (P<0.05); the levels of TNF-α, IL-1β and IL-6 decreased (P<0.05); the expression of γ-H2AX was down-regulated (P<0.05). Conclusion Curcumin-VE hydrogel can delay or weaken the process of radiation-induced oral mucositis by reducing the DNA damage caused by radiation, inhibiting the production of reactive oxygen species, and effectively reducing the level of inflammation in tongue tissue.
Objective To investigate the therapeutic effect of BMSCs- chitosan hydrogel complex transplantation on intervertebral disc degeneration and to provide experimental basis for its cl inical appl ication. Methods Two mill il iter of bone marrow from 6 healthy one-month-old New Zealand rabbits were selected to isolate and culture BMSCs. Then, BMSCs at passage 3 were labeled by 5-BrdU and mixed with chitosan hydrogel to prepare BMSCs- chitosan hydrogel complex. Six rabbitswere selected to establ ish the model of intervertebral disc degeneration and randomized into 3 groups (n=2 per group): control group in which intervertebral disc was separated and exposed but without further processing; transplantation group in which 30 μL of autogenous BMSCs- chitosan hydrogel complex was injected into the center of defected intervertebral disc; degeneration group in which only 30 μL of 0.01 mol/L PBS solution was injected. Animals were killed 4 weeks later and the repaired discs were obtained. Then cell 5-BrdU label ing detection, HE staining, aggrecan safranin O staining, Col II immunohistochemical staining and gray value detection were conducted. Results Cell label ing detection showed that autogenous BMSCs survived and prol iferated after transplantation, forming cell clone. HE staining showed that in the control and transplantation groups, the intervertebral disc had a clear structure, a distinct boundary between the central nucleus pulposus and the outer anulus fibrosus, and the obviously stained cell nuclear and cytochylema; while the intervertebral disc in the degeneration group had a deranged structure and an indistinct division between the nucleus pulposus and the outer anulus fibrosus. Aggrecan safarine O stainning notified that intervertebral disc in the control and transplantation groups were stained obviously, with a clear structure; while the intervertebral disc in the degeneration group demonstrated a deranged structure with an indistinct division between the nucleus pulposus and the anulus fibrosus. Col II immunohistochemical staining showed that the tawny-stained region in the control group was located primarily in the central nucleus pulposus with a clear structure of intervertebral disc, the central nucleus pulposus in the transplantation group was positive with obvious tawny-stained intercellular substances and a complete gross structure, while the stained color in the degeneration group was l ighter than that of other two groups, with a indistinct structure.Gray value assay of Col II immunohistochemical staining section showed that the gray value of the control, the ransplantation and the degeneration group was 223.84 ± 3.93, 221.03 ± 3.53 and 172.50 ± 3.13, respectively, indicating there was no significant difference between the control and the transplantation group (P gt; 0.05), but a significant difference between the control and transplantation groups and the degeneration group (P lt; 0.05). Conclusion The rabbit BMSCs-chitosan hydrogel complex can repair intervertebral disc degeneration, providing an experimental foundation for the cl inical appl ication of injectable tissue engineered nucleus pulposus complex to treat intervertebral disc degeneration.
Objective To construct a ultraviolet-cross-linkable chitosan-carbon dots-morin (NMCM) hydrogel, observe whether it can repair cartilage injury by in vivo and in vitro experiments, and explore the related mechanism. Methods The chitosan was taken to prepare the ultraviolet (UV)-cross-linkable chitosan by combining methacrylic anhydride, and the carbon dots by combining acrylamide. The two solutions were mixed and added morin solution. After UV irradiation, the NMCM hydrogel was obtained, and its sustained release performance was tested. Chondrocytes were separated from normal and knee osteoarticular (KOA) cartilage tissue donated by patients with joint replacement and identified by toluidine blue staining. The 3rd generation KOA chondrocytes were co-cultured with the morin solutions with concentrations of 12.5, 25.0, 50.0 μmol/L and NMCM hydrogel loaded with morin of the same concentrations, respectively. The effects of morin and NMCM hydrogel on the proliferation of chondrocytes were detected by cell counting kit 8 (CCK-8). After co-cultured with NMCM hydrogel loaded with 50 μmol/L morin, the level of collagen type Ⅱ (COL-Ⅱ) of KOA chondrocytes was detected by immunofluorescence staining, and the level of reactive oxygen species (ROS) was detected by 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. Twenty 4-week old Sprague Dawley rats were selected to construct a articular cartilage injury of right hind limb model, and were randomly divided into two groups (n=10). The cartilage injury of the experimental group was repaired with NMCM hydrogel loaded with 25 μmol/L morin, and the control group was not treated. At 4 weeks after operation, the repair of cartilage injury was observed by micro-CT and gross observation and scored by the International Cartilage Repair Association (ICRS) general scoring. The cartilage tissue and subchondral bone tissue were observed by Safranine-O-fast green staining and COL-Ⅱ immunohistochemistry staining and scored by ICRS histological scoring. The expressions of tumor necrosis factor α (TNF-α), nuclear factor κB (NK-κB), matrix metalloproteinase 13 (MMP-13), and COL-Ⅱ were detected by Western blot and real-time fluorescence quantitative PCR. Results NMCM hydrogels loaded with different concentrations of morin were successfully constructed. The drug release rate was fast in a short period of time, gradually slowed down after 24 hours, and the amount of drug release was close to 0 at 96 hours. At this time, the cumulative drug release rate reached 88%. Morin with a concentration ≤50 μmol/L had no toxic effect on chondrocytes, and the proliferation of chondrocytes improved under the intervention of NMCM hydrogel (P<0.05). NMCM hydrogel loaded with morin could increase the level of COL-Ⅱ in KOA chondrocytes (P<0.05) and reduce the level of ROS (P<0.05), but it did not reach the normal level (P<0.05). Animal experiments showed that in the experimental group, the articular surface was rough and the defects were visible at 4 weeks after operation, but the surrounding tissues were repaired and the joint space remained normal; in the control group, the articular surface was rougher, and no repair tissue was found for cartilage defects. Compared with the control group, the experimental group had more chondrocytes, increased COL-Ⅱ expression, and higher ICRS gross and histological scores (P<0.05); the relative expressions of MMP-13, NF-κB, and TNF-α protein and mRNA significantly decreased (P<0.05), and the relative expressions of COL-Ⅱ protein/COL-2a1 mRNA significantly increased (P<0.05). Conclusion NMCM hydrogel can promote chondrocytes proliferation, down regulate chondrocyte catabolism, resist oxidative stress, protect chondrocytes from cartilage injury, and promote cartilage repair.
The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.
We investigated the development of an injectable, biodegradable hydrogel composite of poly(trimethylene carbonate)-F127-poly(trimethylene carbonate)(PTMC11-F127-PTMC11)loaded with bone morphogenetic protein-2 (BMP-2) derived peptide P24 for ectopic bone formation in vivo and evaluated its release kinetics in vitro. Then we evaluated P24 peptide release kinetics from different concentration of PTMC11-F127-PTMC11 hydrogel in vitro using bicinchoninic acid (BCA)assay. P24/PTMC11-F127-PTMC11 hydrogel was implanted into each rat's erector muscle of spine and ectopic bone formation of the implanted gel in vivo was detected by hematoxylin and eosin stain (HE). PTMC11-F127-PTMC11 hydrogel with concentration more than 20 percent showed sustained slow release for one month after the initial burst release. Bone trabeculae surround the P24/PTMC11-F127-PTMC11 hydrogel was shown at the end of six weeks by hematoxylin and eosin stain. These results indicated that encapsulated bone morphogenetic protein (BMP-2) derived peptide P24 remained viable in vivo, thus suggesting the potential of PTMC11-F127-PTMC11 composite hydrogels as part of a novel strategy for localized delivery of bioactive molecules.
Objective To evaluate the effect of endoscopic surgery combined with intraoperative color Doppler ultrasound on removing the injected breast augmentation agents and share our experiences. Methods Sixteen female who accepted the bilateral removal of injected breast augmentation agents through endoscopic surgery combined with intraoperative color Doppler ultrasound between 2008 and 2010 were enrolled in this study. The results, techniques, and advantages of management were analyzed retrospectively. Results One incision was made in 18 breasts, 2 in 4 breasts, 3 in 10 breasts. The length of incision was 0.5 to 1 cm. The mean operative time was 128.70 min per person. The average amount of bleeding was 52.67 ml per person. Complications such as postoperative bleeding, infection, poor drainage, or breast augmentation agents remain did not happened in all cases. No case was turned into normal operation. Female who accepted this operation were all satisfied with the appearance of incisions. During 1-3 months follow up, neither clinically palpable mass nor sensory disturbance in nipple or areola of breast was observed. Color Doppler ultrasound or magnetic resonance showed 16 cases had been cleared free of breast augmentation agents. Conclusion With the advantages of beauty, safe, minimal invasion, and partial resection of lesions at the same time, endoscopic surgery combined with intraoperative color Doppler ultrasound was an effective approach in the removal of injected breast augmentation agents.
Objective To investigate the effect of porcine small intestinal submucosa extracellular matrix (PSISM) on the vitality and gene regulation of hepatocyte so as to lay the experimental foundation for the application of PSISM in liver tissue engineering. Methods The experiment was divided into two parts: ① BRL cells were cultured with 50, 100, and 200 μg/mL PSISM-medium which were prepared by adding PSISM into the H-DMEM-medium containing 10%FBS in groups A1, B1, and C1, and simple H-DMEM-medium served as a control (group D1); ② BRL cells were seeded on 1%, 2%, and 3% PSISM hydrogel which were prepared by dissolving PSISM in sterile PBS solution containing 0.1 mol/L NaOH in groups A2, B2, and C2, and collagen type I gel served as a control (group D2). At 1, 3, and 5 days after culture, the morphology and survival of liver cells were detected by the Live/Dead fluorescent staining. The cell vitality was tested by cell counting kit-8 (CCK-8) assay. And the relative expressions of albumin (ALB), cytokeratin 18 (CK18), and alpha-fetoprotein (AFP) in hepatocytes were determined by real-time fluorescent quantitative PCR (RT-qPCR). Results The Live/Dead fluorescent staining showed the cells survived well in all groups. CCK-8 results displayed that the absorbance (A) value of group C1 was significantly higher than that of group D1 at 5 days after culture with PSISM-medium, and there was no significant difference between groups at other time points (P>0.05). After cultured with PSISM hydrogels, theA values of groups A2, B2, and C2 were significantly higher than those of group D2 at 3 and 5 days (P<0.05), theA value of group A2 was significantly higher than that of groups B2 and C2 at 5 days (P<0.05), but there was no significant difference between groups at other time points (P>0.05). RT-qPCR showed that the relative expressions of ALB and CK18 mRNA significantly increased and the relative expression of AFP mRNA significantly decreased in groups A1, B1, and C1 when compared with group D1 (P<0.05). The relative expression of CK18 mRNA in group C1 was significantly lower than that in groups A1 and B1 (P<0.05). The relative expressions of ALB and CK18 mRNA were significantly higher and the relative expression of AFP mRNA was significantly lower in groups A2, B2, and C2 than group D2 (P<0.05); the relative expression of CK18 mRNA in group A2 was significantly higher than that in group B2 (P<0.05), and the relative expression of AFP mRNA in group A2 was significantly lower than that in group C2 (P<0.05), but no significant difference was found between other groups (P>0.05). Conclusion PSISM has good compatibility with hepatocyte and can promote the vitality and functional gene expression of hepatocyte. PSISM is expected to be used as culture medium supplement or cell carrier for liver tissue engineering.
Acute kidney injury is a worldwide public health issue, and its treatment and management strategies continue to advance. In addition to traditional kidney replacement therapy, research in recent years has been focused on whole organ engineering and biofabrication of kidney assistive devices and bioinjections for in-body regeneration. Hydrogel materials show great potential in renal tissue engineering because of their good biocompatibility, thermal stability and controllable biochemical and mechanical properties. This article reviews the application of various hydrogel materials in renal tissue engineering to promote kidney regeneration and discusses the characteristics and applications of natural hydrogels and synthetic hydrogels, which is expected to further promote their clinical applications.
The biocompatible hydrogel was fabricated under suitable conditions with natural dextran and polyethylene glycol (PEG) as the reaction materials. The oligomer (Dex-AI) was firstly synthesized with dextran and allylisocyanate (AI). This Dex-AI was then reacted with poly (ethyleneglycoldiacrylate) (PEGDA) under the mass ratio of 4∶6 to get hydrogel (DP) with the maximum water absorption of 810%. This hydrogel was grafted onto the surface of medical catheter via diphenyl ketone treatment under ultraviolet (UV) initiator. The surface contact angle became lower from (97 ± 6.1)° to (25 ± 4.2)° after the catheter surface was grafted with hydrogel DP, which suggests that the catheter possesses super hydrophilicity with hydrogel grafting. The in vivo evaluation after they were implanted into ICR rats subcutaneously verified that this catheter had less serious inflammation and possessed better histocompatibility comparing with the untreated medical catheter. Therefore, it could be concluded that hydrogel grafting is a good technology for patients to reduce inflammation due to catheter implantation, esp. for the case of retention in body for a relative long time.
Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs.