Objective To systematically review the efficacy of six cognitive interventions on cognitive function of patients with mild cognitive impairment after stroke. Methods The PubMed, EMbase, Cochrane Library, SinoMed, WanFang Data and CNKI databases were electronically searched to collect randomized controlled trials on the effects of non-drug interventions on the cognitive function of patients with mild cognitive impairment after stroke from inception to March 2023. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. Network meta-analysis was then performed using Openbugs 3.2.3 and Stata 16.0 software. Results A total of 72 studies involving 4 962 patients were included. The results of network meta-analysis showed that the following five cognitive interventions improved the cognitive function of stroke patients with mild cognitive impairment: cognitive control intervention (SMD=?1.28, 95%CI ?1.686 to ?0.90, P<0.05) had the most significant effect on the improvement of cognitive function, followed by computer cognitive training (SMD=?1.02, 95%CI ?1.51 to ?0.53, P<0.05), virtual reality cognitive training (SMD=?1.20, 95%CI ?1.78 to ?0.62, P<0.05), non-invasive neural regulation (SMD=?1.09, 95%CI ?1.58 to ?0.60, P<0.05), and cognitive stimulation (SMD=?0.94, 95%CI ?1.82 to ?0.07, P<0.05). Conclusion Five cognitive interventions are effective in improving cognitive function for stroke patients with mild cognitive impairment, among which cognitive control intervention is the most effective. Due to the limited quantity and quality of the included studies, more high-quality studies are needed to verify the above conclusion.
The recurrent neural network architecture improves the processing ability of time-series data. However, issues such as exploding gradients and poor feature extraction limit its application in the automatic diagnosis of mild cognitive impairment (MCI). This paper proposed a research approach for building an MCI diagnostic model using a Bayesian-optimized bidirectional long short-term memory network (BO-BiLSTM) to address this problem. The diagnostic model was based on a Bayesian algorithm and combined prior distribution and posterior probability results to optimize the BO-BiLSTM network hyperparameters. It also used multiple feature quantities that fully reflected the cognitive state of the MCI brain, such as power spectral density, fuzzy entropy, and multifractal spectrum, as the input of the diagnostic model to achieve automatic MCI diagnosis. The results showed that the feature-fused Bayesian-optimized BiLSTM network model achieved an MCI diagnostic accuracy of 98.64% and effectively completed the diagnostic assessment of MCI. In conclusion, based on this optimization, the long short-term neural network model has achieved automatic diagnostic assessment of MCI, providing a new diagnostic model for intelligent diagnosis of MCI.
Post-stroke cognitive impairment (PSCI) is the most common dysfunction after stroke, which seriously affects patients’ quality of life and survival time. To strengthen the management and prevention of PSCI, the European Stroke Organization and the European Academy of Neurology jointly developed the guidelines for PSCI in 2021. This paper introduces the background, compilation method and structure, management suggestions and expert consensus of PSCI, the next research direction, etc. Compared with the current prevention and treatment measures of PSCI in China, it aims to provide methodological reference for Chinese scholars to develope PSCI guidelines and reference evidence for clinical prevention and treatment of PSCI.
Chemotherapy-related cognitive impairment (CRCI) is one of the treatment-related side effects in cancer patients, which can reduce patients’ participation in medical decision-making and treatment, seriously affecting their daily function and quality of life. This article reviews the definition, research status, and influencing factors of CRCI in lung cancer patients, in order to provide basis and ideas for the subsequent evaluation and management of CRCI in lung cancer patients, and promote the optimization and improvement of the overall rehabilitation process of lung cancer patients.
Cerebral small vessel disease refers to a series of clinical, imaging, and pathological syndromes caused by various factors affecting small blood vessels in the brain. Cognitive impairment is one of the most common complications of cerebral small vessel disease. Current researches have found that cognitive impairment is related to various factors such as hypoxia. Hyperbaric oxygen therapy can achieve certain therapeutic effects by improving hypoxia. This article reviews the pathogenesis of cerebral small vessel disease, biomarkers of cerebral small vessel disease, research progress on hyperbaric oxygen therapy for cognitive impairment, and focuses on the research progress of hyperbaric oxygen therapy for mild cognitive impairment and dementia, providing more references for clinical treatment.
Vascular cognitive impairment (VCI), a syndrome induced by cerebrovascular disease and its risk factors, has become a major public health challenge worldwide. Especially in the context of an increasingly aging population, its impact is becoming more significant. In recent years, research has gradually revealed the crucial role of chronic cerebral hypoperfusion (CCH) in the occurrence and development of VCI. CCH leads to long-term ischemia and hypoxia in brain tissue, which seriously threatens mitochondrial function and triggers a series of problems such as mitochondrial oxidative stress, calcium homeostasis disturbance, dynamic abnormalities, autophagy dysregulation, and impaired biogenesis. These issues are extensively involved in the pathological process of VCI. This article provides an overview of the correlation between mitochondrial dysfunction and VCI under CCH conditions, aiming to explore new directions for the treatment of VCI.
Alzheimer’s disease (AD) is a common and serious form of elderly dementia, but early detection and treatment of mild cognitive impairment can help slow down the progression of dementia. Recent studies have shown that there is a relationship between overall cognitive function and motor function and gait abnormalities. We recruited 302 cases from the Rehabilitation Hospital Affiliated to National Rehabilitation Aids Research Center and included 193 of them according to the screening criteria, including 137 patients with MCI and 56 healthy controls (HC). The gait parameters of the participants were collected during performing single-task (free walking) and dual-task (counting backwards from 100) using a wearable device. By taking gait parameters such as gait cycle, kinematics parameters, time-space parameters as the focus of the study, using recursive feature elimination (RFE) to select important features, and taking the subject’s MoCA score as the response variable, a machine learning model based on quantitative evaluation of cognitive level of gait features was established. The results showed that temporal and spatial parameters of toe-off and heel strike had important clinical significance as markers to evaluate cognitive level, indicating important clinical application value in preventing or delaying the occurrence of AD in the future.
ObjectiveTo systematically review the efficacy of repetitive transcranial magnetic stimulation (rTMS) on patients with mild cognitive impairment (MCI). MethodsWe searched databases including PubMed, The Cochrane Library (Issue 10, 2015), EMbase, PsycINF, EBSCO, CBM, CNKI, WanFang Data and VIP from inception to October 2015 to collect randomized controlled trials (RCTs) about rTMS for patients with MCI. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Then, meta-analysis was performed by using RevMan 5.3 software. ResultsA total of 5 RCTs involving 180 MCI patients were included. The results of meta-analysis showed that, compared with the control group, rTMS treatment could significantly improve the overall cognitive abilities of MCI patients (SMD=2.53, 95% CI 0.91 to 4.16, P=0.002), as well as the single-domain cognitive performances, including tests for episodic memory (MD=0.98, 95% CI 0.24 to 1.72, P=0.01) and verbal fluency (MD=2.08, 95% CI 0.46 to 3.69, P=0.01). rTMS was a well-tolerated therapy, with slightly more adverse events observed than the control group (RD=0.09, 95% CI 0.00 to 0.18, P=0.04), but cases were mainly transient headache, dizziness and scalp pain. ConclusionrTMS may benefit the cognitive abilities of MCI patients. Nevertheless, due to the limited quantity and quality of included studies, large-scale, multicenter, and high quality RCTs are required to verify the conclusion.
Normal brain aging and a serious of neurodegenerative diseases may lead to decline in memory, attention and executive ability and poorer quality of life. The mechanism of the decline is not clear now and is still a hot issue in the fields of neuroscience and medicine. A large number of researches showed that resting state functional brain networks based functional magnetic resonance imaging (fMRI) are sensitive and susceptive to the change of cognitive function. In this paper, the researches of brain functional connectivity based on resting fMRI in recent years were compared, and the results of subjects with different levels of cognitive decline including normal brain aging, mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were reviewed. And the changes of brain functional networks under three different levels of cognitive decline are introduced in this paper, which will provide the basis for the detection of normal brain aging and clinical diseases.
Hypoxia and other factors are related to cognitive impairment. Hyperbaric oxygen therapy can improve tissue oxygen supply to improve brain hypoxia. Based on the basic principle of hyperbaric oxygen therapy, hyperbaric oxygen has been widely used in recent years for cognitive impairment caused by stroke, brain injury, neurodegenerative disease, neuroinflammatory disease and metabolic encephalopathy. This article will review the basic mechanism of hyperbaric oxygen, and summarize and discuss the improvement of hyperbaric oxygen therapy on cognitive and brain diseases, in order to provide relevant reference for clinical treatment.