With the intensification of global aging trends and the continuous rise in the incidence of chronic diseases, the demand for health monitoring and early intervention has become increasingly urgent. Owing to their non-invasive nature, portability, and comfort, flexible wearable sensors have emerged as a key technology driving the development of personalized healthcare. Starting from specific application scenarios in health monitoring, this article systematically reviews recent research advances in flexible sensors within the healthcare field. Firstly, it outlines the design fundamentals of flexible sensors. This is followed by a focused analysis of their specific applications in monitoring vital signs, biochemical markers, as well as motion and neural activities, along with an in-depth exploration of the clinical significance, technical challenges, and targeted solutions in different scenarios. Finally, the current technical bottlenecks and clinical challenges are summarized, and an outlook on the future development of health monitoring systems is provided. This review aims to provide a systematic reference for the deep integration of flexible electronics technology and medicine.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment, with the predominant clinical diagnosis of spatial working memory (SWM) deficiency, which seriously affects the physical and mental health of patients. However, the current pharmacological therapies have unsatisfactory cure rates and other problems, so non-pharmacological physical therapies have gradually received widespread attention. Recently, a novel treatment using 40 Hz light flicker stimulation (40 Hz-LFS) to rescue the cognitive function of model animals with AD has made initial progress, but the neurophysiological mechanism remains unclear. Therefore, this paper will explore the potential neural mechanisms underlying the modulation of SWM by 40 Hz-LFS based on cross-frequency coupling (CFC). Ten adult Wistar rats were first subjected to acute LFS at frequencies of 20, 40, and 60 Hz. The entrainment effect of LFS with different frequency on neural oscillations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was analyzed. The results showed that acute 40 Hz-LFS was able to develop strong entrainment and significantly modulate the oscillation power of the low-frequency gamma (lγ) rhythms. The rats were then randomly divided into experimental and control groups of 5 rats each for a long-term 40 Hz-LFS (7 d). Their SWM function was assessed by a T-maze task, and the CFC changes in the HPC-mPFC circuit were analyzed by phase-amplitude coupling (PAC). The results showed that the behavioral performance of the experimental group was improved and the PAC of θ-lγ rhythm was enhanced, and the difference was statistically significant. The results of this paper suggested that the long-term 40 Hz-LFS effectively improved SWM function in rats, which may be attributed to its enhanced communication of different rhythmic oscillations in the relevant neural circuits. It is expected that the study in this paper will build a foundation for further research on the mechanism of 40 Hz-LFS to improve cognitive function and promote its clinical application in the future.
Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.
With the wide application of virtual reality technology and the rapid popularization of virtual reality devices, the problem of brain fatigue caused by prolonged use has attracted wide attention. Sixteen healthy subjects were selected in this study. And electroencephalogram (EEG) signals were acquired synchronously while the subjects watch videos in similar types presented by traditional displayer and virtual reality separately. Two questionnaires were conducted by all subjects to evaluate the state of fatigue before and after the experiment. The mutual correlation method was selected to construct the mutual correlation brain network of EEG signals before and after watching videos in two modes. We also calculated the mutual correlation coefficient matrix and the mutual correlation binary matrix and compared the average of degree, clustering coefficient, path length, global efficiency and small world attribute during two experiments. The results showed that the subjects were easier to get fatigue by watching virtual reality video than watching video presented by traditional displayer in a certain period of time. By comparing the characteristic parameters of brain network before and after watching videos, it was found that the average degree value, the average clustering coefficient, the average global efficiency and the small world attribute decreases while the average path length value increased significantly. In addition, compared to traditional plane video, the characteristic parameters of brain network changed more greatly after watching the virtual reality video with a significant difference (P < 0.05). This study can provide theoretical basis and experimental reference for analyzing and evaluating brain fatigue induced by virtual reality visual experience.
Alzheimer’s disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group (P < 0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved (P < 0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has been paid attention to with increasing interests as a therapeutic neural rehabilitative tool. Studies confirmed that high-frequency rTMS could improve the cognitive performance in behavioral test as well as the excitability of the neuron in animals. This study aimes to investigate the effects of rTMS on the cognition and neuronal excitability of Kunming mice during the natural aging. Twelve young mice, 12 adult mice, and 12 aged mice were used, and each age group were randomly divided into rTMS group and control group. rTMS-treated groups were subjected to high-frequency rTMS treatment for 15 days, and control groups were treated with sham stimulation for 15 days. Then, novel object recognition and step-down tests were performed to examine cognition of learning and memory. Whole-cell patch clamp technique was used to record and analyze resting membrane potential, action potential (AP), and related electrical properties of AP of hippocampal dentate gyrus (DG) granule neurons. Data analysis showed that cognition of mice and neuronal excitability of DG granule neurons were degenerated significantly as the age increased. Cognitive damage and degeneration of some electrical properties were alleviated under the condition of high-frequency rTMS. It may be one of the mechanisms of rTMS to alleviate cognitive damage and improve cognitive ability by changing the electrophysiological properties of DG granule neurons and increasing neuronal excitability.
Electroencephalogram (EEG) is characterized by high temporal resolution, and various EEG analysis methods have developed rapidly in recent years. The EEG microstate analysis method can be used to study the changes of the brain in the millisecond scale, and can also present the distribution of EEG signals in the topological level, thus reflecting the discontinuous and nonlinear characteristics of the whole brain. After more than 30 years of enrichment and improvement, EEG microstate analysis has penetrated into many research fields related to brain science. In this paper, the basic principles of EEG microstate analysis methods are summarized, and the changes of characteristic parameters of microstates, the relationship between microstates and brain functional networks as well as the main advances in the application of microstate feature extraction and classification in brain diseases and brain cognition are systematically described, hoping to provide some references for researchers in this field.
Changes in the intrinsic characteristics of brain neural activities can reflect the normality of brain functions. Therefore, reliable and effective signal feature analysis methods play an important role in brain dysfunction and relative diseases early stage diagnosis. Recently, studies have shown that neural signals have nonlinear and multi-scale characteristics. Based on this, researchers have developed the multi-scale entropy (MSE) algorithm, which is considered more effective when analyzing multi-scale nonlinear signals, and is generally used in neuroinformatics. The principles and characteristics of MSE and several improved algorithms base on disadvantages of MSE were introduced in the article. Then, the applications of the MSE algorithm in disease diagnosis, brain function analysis and brain-computer interface were introduced. Finally, the challenges of these algorithms in neural signal analysis will face to and the possible further investigation interests were discussed.
With the wide application of deep learning technology in disease diagnosis, especially the outstanding performance of convolutional neural network (CNN) in computer vision and image processing, more and more studies have proposed to use this algorithm to achieve the classification of Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal cognition (CN). This article systematically reviews the application progress of several classic convolutional neural network models in brain image analysis and diagnosis at different stages of Alzheimer’s disease, and discusses the existing problems and gives the possible development directions in order to provide some references.
40 Hz light flicker stimulation is deemed to hold considerable promise in the treatment of Alzheimer’s disease (AD). However, whether its long-term effect can improve working memory and its related mechanisms remains to be further explored. In this study, 21 adult Wistar rats were randomly divided into the AD light-stimulation group, the AD group and the control group. AD models were established in the first two of these groups, with the light-stimulation group receiving long-term 40 Hz light flicker stimulation. Working memory performance across groups was subsequently evaluated using the T-maze task. To investigate the potential neural mechanisms underlying the effects of 40 Hz light stimulation on working memory, we examined changes in neuronal excitability within the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as alterations in inter-regional synchronization of neural activity. The findings demonstrated that prolonged 40 Hz light stimulation significantly improved working memory performance in AD model rats. Furthermore, the intervention enhanced the synchronization of neural activity between the hippocampus (HPC) and medial prefrontal cortex (mPFC), as well as the efficiency of information transfer, primarily mediated by theta and low-frequency gamma oscillations. This study provides theoretical support for exploring the mechanisms of 40 Hz light flicker stimulation and its further clinical application in the prevention and treatment of Alzheimer’s disease.