| 1. |
Li A, Wei X, Xie Y, et al. Light exposure and its applications in human health. J Biophotonics, 2024, 17(5): e202400023.
|
| 2. |
Li C, Managi S. Inappropriate nighttime light reduces living comfort. Environ Pollut, 2023, 334: 122173.
|
| 3. |
Lee K, Park Y, Suh S W, et al. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep, 2021, 11(1): 16206.
|
| 4. |
Dima R, Francio V T, Towery C, et al. Review of literature on low-level laser therapy benefits for nonpharmacological pain control in chronic pain and osteoarthritis. Altern Ther Health Med, 2017, 24(5): 8-10.
|
| 5. |
Li D, Liu S, Yu T, et al. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun, 2023, 14(1): 6104.
|
| 6. |
Semyachkina-Glushkovskaya O, Kurths J, Blokhina I, et al. Night photostimulation of clearance of beta-amyloid from mouse brain: new strategies in preventing Alzheimer’s disease. Cells, 2021, 10(12): 3289.
|
| 7. |
Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632): 230-235.
|
| 8. |
Singer A C, Martorell A J, Miller D J, et al. Noninvasive 40-Hz light flicker to recruit microglia and reduce amyloid beta load. Nat Protoc, 2018, 13(8): 1850-1868.
|
| 9. |
Park S S, Park H S, Kim C J, et al. Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer’s disease. Alzheimers Res Ther, 2020, 12(1): 62.
|
| 10. |
Huang F, Huang Q, Zheng L, et al. Effect of 40Hz light flicker on behaviors of adult C57BL/6J mice. Brain Res, 2023, 1814: 148441.
|
| 11. |
Rajasethupathy P, Sankaran S, Marshel J H, et al. Projections from neocortex mediate top-down control of memory retrieval. Nature, 2015, 526(7575): 653-659.
|
| 12. |
Zheng L, Yu M, Lin R, et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat Commun, 2020, 11(1): 3012.
|
| 13. |
Lin Z, Hou G, Yao Y, et al. 40-Hz blue light changes hippocampal activation and functional connectivity underlying recognition memory. Front Hum Neurosci, 2021, 15: 739333.
|
| 14. |
Mamashli F, Khan S, Hamalainen M, et al. Synchronization patterns reveal neuronal coding of working memory content. Cell Rep, 2021, 36(8): 109566.
|
| 15. |
Gordon J A. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol, 2011, 21(3): 486-491.
|
| 16. |
Jones M W, Wilson M A. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol, 2005, 3(12): e402.
|
| 17. |
Samant N P, Gupta G L. Avicularin attenuates memory impairment in rats with amyloid beta-induced Alzheimer's disease. Neurotox Res, 2022, 40(1): 140-153.
|
| 18. |
Dudchenko P A. An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev, 2004, 28(7): 699-709.
|
| 19. |
Colgin L L. Mechanisms and functions of theta rhythms. Annu Rev Neurosci, 2013, 36: 295-312.
|
| 20. |
Buzsaki G. Theta oscillations in the hippocampus. Neuron, 2002, 33(3): 325-340.
|
| 21. |
Ray S, Maunsell J H R, Ungerleider L. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol, 2011, 9(4): e1000610.
|
| 22. |
Adhikari A, Sigurdsson T, Topiwala M A, et al. Cross-correlation of instantaneous amplitudes of field potential oscillations: a straightforward method to estimate the directionality and lag between brain areas. J Neurosci Methods, 2010, 191(2): 191-200.
|
| 23. |
Ahnaou A, Moechars D, Raeymaekers L, et al. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci Rep, 2017, 7(1): 14189.
|
| 24. |
Funane T, Jun H, Sutoko S, et al. Impaired sharp-wave ripple coordination between the medial entorhinal cortex and hippocampal CA1 of knock-in model of Alzheimer’s disease. Front Syst Neurosci, 2022, 16: 955178.
|
| 25. |
Tomoaki N, Lam T N, Patel A Y, et al. Impaired in vivo gamma oscillations in the medial entorhinal cortex of knock-in Alzheimer model. Front Syst Neurosci, 2017, 11: 48.
|
| 26. |
Sun Q, Zhang J, Li A, et al. Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nat Commun, 2022, 13(1): 998.
|
| 27. |
Bazzigaluppi P, Beckett T L, Koletar M M, et al. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer’s disease. J Neurochem, 2018, 144(5): 669-679.
|
| 28. |
Milan S, Craig K, Horvath T L, et al. Neurophysiological signals as predictive translational biomarkers for Alzheimer's disease treatment: effects of donepezil on neuronal network oscillations in TgF344-AD rats. Alzheimers Res Ther, 2018, 10(1): 105.
|
| 29. |
Bitarafan S, Pybus A F, Rivera Moctezuma F G, et al. Frequency and duration of sensory flicker controls astrocyte and neuron specific transcriptional profiles in 5xFAD mice. bioRxiv, 2024. DOI: 10.1101/2024.05.20.594705.
|
| 30. |
Hu H, Pang Y, Luo H, et al. Noninvasive light flicker stimulation promotes optic nerve regeneration by activating microglia and enhancing neural plasticity in zebrafish. Invest Ophthalmol Vis Sci, 2024, 65(5): 3.
|
| 31. |
Vivekananda U, Bush D, Bisby J A, et al. Theta power and theta-gamma coupling support long-term spatial memory retrieval. Hippocampus, 2021, 31(2): 213-220.
|
| 32. |
Mysin I, Shubina L. From mechanisms to functions: the role of theta and gamma coherence in the intrahippocampal circuits. Hippocampus, 2022, 32(5): 342-358.
|