| 1. |
Jannati A, Oberman L M, Rotenberg A, et al. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology, 2023, 48(1): 191-208.
|
| 2. |
Lu F, Cui Q, Zou Y, et al. Effects of rTMS intervention on functional neuroimaging activities in adolescents with major depressive disorder measured using resting-state fMRI. Bioengineering, 2023, 10(12): 1374.
|
| 3. |
Vucic S, Chen K H S, Kiernan M C, et al. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol, 2023, 150: 131-175.
|
| 4. |
Wang M, Xia R, Shi J, et al. Effect of high-frequency repetitive transcranial magnetic stimulation under different intensities upon rehabilitation of chronic pelvic pain syndrome: protocol for a randomized controlled trial. Trials, 2023, 24(1): 40.
|
| 5. |
Fitzgerald P B. Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it?. Brain Stimul, 2021, 14(3): 730-736.
|
| 6. |
祝凱, 周曉青, 馬任, 等. 基于多物理場復合的新型無創腦深部精準刺激方法探究. 中國生物醫學工程學報, 2024, 43(3): 327-337.
|
| 7. |
Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 2017, 169(6): 1029-1041.
|
| 8. |
Grossman N, Okun M S, Boyden E S. Translating temporal interference brain stimulation to treat neurological and psychiatric conditions. JAMA Neurol, 2018, 75(11): 1307-1308.
|
| 9. |
Zaeimbashi M, Khalifa A, Dong C, et al. Magnetic temporal interference for noninvasive, high-resolution, and localized deep brain stimulation: concept validation. bioRxiv, 2020: 2020.07.20.212845.
|
| 10. |
Sorkhabi M M, Wendt K, Denison T. Temporally interfering TMS: focal and dynamic stimulation location// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 3537-3543.
|
| 11. |
Khalifa A, Abrishami S M, Zaeimbashi M, et al. Magnetic temporal interference for noninvasive and focal brain stimulation. J Neural Eng, 2023, 20(1): 016002.
|
| 12. |
Fang X, Wang S, Luo Y, et al. Deep brain temporally interfering magnetic stimulation via parametric characterized spatial array. AIP Adv, 2024, 14(8): 085201.
|
| 13. |
Wang T, Yan L, Yang X, et al. Optimal design of array coils for multi-target adjustable electromagnetic brain stimulation system. Bioengineering, 2023, 10(5): 568.
|
| 14. |
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US), 2011.
|
| 15. |
Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci, 2000, 23(5): 216-222.
|
| 16. |
Mirzakhalili E, Barra B, Capogrosso M, et al. Biophysics of temporal interference stimulation. Cell Syst, 2020, 11(6): 557-572.
|
| 17. |
Wu J, Wang H, Jin J, et al. Influence of coil orientation on the TMS-induced electric field within the clinically recommended brain region for major depressive disorder. Brain Stimul, 2025, 18(2): 109-111.
|
| 18. |
Deng Z D, Lisanby S H, Peterchev A V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul, 2013, 6(1): 1-13.
|
| 19. |
Deng Z D, Lisanby S H, Peterchev A V. Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. Journal Neural Eng, 2011, 8(1): 016007.
|
| 20. |
Karimi F, Attarpour A, Amirfattahi R, et al. Computational analysis of non-invasive deep brain stimulation based on interfering electric fields. Phys Med Biol, 2019, 64(23): 235010.
|
| 21. |
Yu H, Du B, Guo L, et al. Design of transcranial magnetic stimulation coils for mouse with improved stimulus focus and intensity. IEEE Trans Magn, 2021, 58(2): 1-4.
|
| 22. |
劉小璽, 于洪麗, 垢福帥, 等. 嚙齒類動物經顱時間干涉電刺激定量分析: 針對電極排列的仿真研究. 生物醫學工程學雜志, 2025, 42(2): 280-287.
|
| 23. |
Deng Z D, Robins P L, Dannhauer M, et al. Optimizing TMS coil placement approaches for targeting the dorsolateral prefrontal cortex in depressed adolescents: an electric field modeling study. Biomedicines, 2023, 11(8): 2320.
|
| 24. |
Chang Y C, Ahmed U, Jayaprakash N, et al. kHz-frequency electrical stimulation selectively activates small, unmyelinated vagus afferents. Brain Stimul, 2022, 15(6): 1389-1404.
|
| 25. |
Barnes W L, Lee W H, Peterchev A V. Approximating transcranial magnetic stimulation with electric stimulation in mouse: a simulation study// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014: 6129-6132.
|
| 26. |
Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol, 1996, 41(11): 2251.
|
| 27. |
Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. Florence: IFAC-CNR, 1997.
|
| 28. |
Di Matteo S, Viall N M, Kepko L. Power spectral density background estimate and signal detection via the multitaper method. J Geophys Res Space Phys, 2021, 126(2): e2020JA028748.
|
| 29. |
楊碩, 冀亞坤, 王磊, 等. 基于腦疲勞的Delta-Gamma相位幅值耦合研究. 中國生物醫學工程學報, 2018, 37(4): 445-450.
|
| 30. |
王龍龍, 李雙燕, 李天翔, 等. 50 Hz電磁場對大鼠工作記憶的影響及其神經機制研究. 生物醫學工程學雜志, 2023, 40(6): 1135-1141.
|