| 1. |
Ma Y, Karako K, Song P, et al. Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke. Biosci Trends, 2025, 19(3): 243-251.
|
| 2. |
Zhang X, Xie L, Liu W, et al. Exoskeleton-guided passive movement elicits standardized EEG patterns for generalizable BCIs in stroke rehabilitation. J NeuroEngineering Rehabil, 2025, 22(1): 97.
|
| 3. |
Zhang Y, Gao Y, Zhou J, et al. Advances in brain-computer interface controlled functional electrical stimulation for upper limb recovery after stroke. Brain Res Bull, 2025, 226: 111354.
|
| 4. |
Cruz M V, Jamal S, Sethuraman S C. A comprehensive survey of brain–computer interface technology in health care: Research perspectives. J Med Signals Sens, 2025, 15(6): 16.
|
| 5. |
Chen S, Chen M, Wang X, et al. Brain–computer interfaces in 2023–2024. Brain‐X, 2025, 3(1): e70024.
|
| 6. |
Shirodkar V, Reddy Edla D, Kumari A, et al. Event-related desynchronization detection and electroencephalography motor imagery classification using vision transformer. Intell Data Anal, 2025, 29(6): 1598-1614.
|
| 7. |
Liu J, Li Y, Zhao D, et al. Efficacy and safety of brain–computer interface for stroke rehabilitation: an overview of systematic review. Front Hum Neurosci, 2025, 19: 1525293.
|
| 8. |
Gómez-Morales ó W, Collazos-Huertas D F, álvarez-Meza A M, et al. EEG signal prediction for motor imagery classification in brain–computer interfaces. Sensors, 2025, 25(7): 2259.
|
| 9. |
Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag, 2007, 25(1): 41-56.
|
| 10. |
Chen X, Li C, Liu A, et al. Toward open-world electroencephalogram decoding via deep learning: A comprehensive survey. IEEE Signal Process Mag, 2022, 39(2): 117-134.
|
| 11. |
Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp, 2017, 38(11): 5391-5420.
|
| 12. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng, 2018, 15(5): 056013.
|
| 13. |
Mane R, Chew E, Chua K, et al. FBCNet: A multi-view convolutional neural network for brain-computer interface. arXiv preprint arXiv, 2021: 2104.01233.
|
| 14. |
Ang K K, Chin Z Y, Zhang H, et al. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong: IEEE, 2008: 2390-2397.
|
| 15. |
Roy Y, Banville H, Albuquerque I, et al. Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng, 2019, 16(5): 051001.
|
| 16. |
Song Y, Zheng Q, Liu B, et al. EEG conformer: Convolutional transformer for EEG decoding and visualization. IEEE Trans Neural Syst Rehabil Eng, 2022, 31: 710-719.
|
| 17. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 6000-6010.
|
| 18. |
Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv, 2018: 1803.01271.
|
| 19. |
Ingolfsson T M, Hersche M, Wang X, et al. EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces// 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto: IEEE, 2020: 2958-2965.
|
| 20. |
Musallam Y K, AlFassam N I, Muhammad G, et al. Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed Signal Process Control, 2021, 69: 102826.
|
| 21. |
Altaheri H, Muhammad G, Alsulaiman M. Physics-informed attention temporal convolutional network for EEG-based motor imagery classification. IEEE Trans Ind Inform, 2022, 19(2): 2249-2258.
|
| 22. |
Ye T, Dong L, Xia Y, et al. Differential transformer. arXiv preprint arXiv, 2024: 2410.05258.
|
| 23. |
Brunner C, Leeb R, Müller-Putz G, et al. BCI Competition 2008–Graz data set A. Graz: Graz University of Technology, 2008.
|
| 24. |
Leeb R, Brunner C, Müller-Putz G, et al. BCI Competition 2008–Graz data set B. Graz: Graz University of Technology, 2008.
|
| 25. |
Mane R, Robinson N, Vinod A P, et al. A multi-view CNN with novel variance layer for motor imagery brain computer interface//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 2950-2953.
|
| 26. |
Tao W, Wang Z, Wong C M, et al. ADFCNN: attention-based dual-scale fusion convolutional neural network for motor imagery brain–computer interface. IEEE Trans Neural Syst Rehabil Eng, 2023, 32: 154-165.
|
| 27. |
Zhao Q, Zhu W. TMSA-Net: A novel attention mechanism for improved motor imagery EEG signal processing. Biomed Signal Process Control, 2025, 102: 107189.
|
| 28. |
Gu H, Chen T, Ma X, et al. CLTNet: A hybrid deep learning model for motor imagery classification. Brain Sci, 2025, 15(2): 124.
|
| 29. |
Ai Q, Liu Y, Liu Q, et al. Holographic convolutional attention neural network for motor imagery decoding based on EEG temporal–spatial frequency features. Biomed Signal Process Control, 2025, 104: 107526.
|
| 30. |
Wang D, Wei Q. SMANet: A model combining SincNet, multi-branch spatial-temporal CNN and attention mechanism for motor imagery BCI. IEEE Trans Neural Syst Rehabil Eng, 2025, 33: 1497-1508.
|
| 31. |
Lotte F, Bougrain L, Cichocki A, et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng, 2018, 15(3): 031005.
|