Objective To explore the expression and effect of heme oxygenase-1 ( HO-1) in ventilator-induced lung injury. Methods Twenty-four New Zealand rabbits were randomly assigned to three groups, ie. a conventional ventilation + PEEP group( C group) , a ventilator-induced lung injury group( VILI group) , and a VILI + HO-1 inducer hemin group( Hm group) .Western blot and immunohistochemistry assay were used to investigate the expression of HO-1 protein. Blood gas analysis, lung wet /dry ratio, lunghistopathology and lung injury score were used to evaluate lung injury. Results HO-1 protein expression significantly increased in the VILI group compared with the C group. HO-1 was found mainly in alveolar epithelial cells and vascular endothelial cells, as well as in alveolar macrophages and neutrophils. Compared with the VILI group, HO-1 protein and PaO2 /FiO2 increased, while lung wet/dry ratio and lung injury score decreased in the Hmgroup significantly( P lt;0. 05) . Conclusion High HO-1 expression can alleviate lung injury from large tidal volume ventilation, implying its protective role in lung pathogenesis.
Objective To investigate the effect of a real-time compliance dashboard to help reduce ventilator-associated pneumonia ( VAP) with ventilator bundle. Methods 240 patients who were admitted into the intensive care unit ( ICU) of Shougang Hospital of Peking University and had received mechanical ventilation ( MV) for over 48 hours, between January 2010 and November 2011, were studied prospectively. The patients were divided into two groups by random number table, ie. a dashboard group ( n = 120) with implementation of a real-time compliance dashboard to help reduce VAP with ventilator bundle, and a control group ( n=120) with implementation of usually routine order to help reduce VAP with ventilator bundle. The success rate of ventilator bundle implementation, incidence of VAP, duration of MV, duration within ICU, mortality within 28 days, cost within ICU were compared between two groups. Results Compared with the control group, the success rate of ventilator bundle implementation obviously increased ( 81.6% vs. 52.5%) , incidence of VAP ( 14. 5/1000 days of MV vs. 36.2 /1000 days of MV) , duration of MV [ 5( 4,7) days vs. 8( 6,11) days] , duration within ICU [ 8( 6,12) days vs. 13( 8,16) days] , mortality of 28 days ( 12.6% vs. 28.6% ) , and cost within ICU ( 36,437 vs. 58,942) in the dashboard group obviously reduced ( Plt;0.05) . Conclusions Implementation of a real time compliance dashboard to help reduce VAP with ventilator bundle can obviously improve medical personnel compliance and reduce incidence of VAP, duration of MV, duration within ICU, mortality and cost in ICU than those of routine medical order to help reduce VAP with ventilator bundle.
ObjectiveTo evaluate the efficacy of aerosolized aminoglycoside antibiotics in patients with ventilator-associated pneumonia (VAP) by meta-analysis.MethodsWe searched PubMed, Embase, China National Knowledge Infrastructure, VIP and Wanfang Data for the Chinese and English literature on aerosolized aminoglycoside antibiotics for VAP until May, 2018. After data extraction and quality evaluation, RevMan 5.2 software was performed for meta-analysis.ResultsA total of 9 randomized controlled trials and a total of 543 patients were included in this study. Compared with patients treated with non-atomized inhaled aminoglycoside antibiotics, meta-analysis showed that aerosol inhalation of amikacin significantly improved the clinical cure rate of patients with VAP [odds ratio (OR)=2.37, 95% confidence interval (CI) (1.50, 3.75), P=0.000 2], nebulized tobramycin [OR=2.30, 95%CI (0.92, 5.78), P=0.08] and two or more antibiotics [OR=2.00, 95%CI (0.62, 6.46), P=0.25] had no significant effect on the clinical cure rate of patients with VAP; aerosolized aminoglycoside antibiotics had no significant effect on mortality of patients [OR=1.17, 95%CI (0.66, 2.07), P=0.59] and tracheal spasm rate [OR=2.39, 95%CI (0.94, 6.11), P=0.07] and renal dysfunction rate [OR=0.62, 95%CI (0.32, 1.21), P=0.16] in patients with VAP.ConclusionInhalation of amikacin can significantly improve the clinical cure rate of patients with VAP, but it can not reduce the mortality rate of patients; the safety of aerosolized aminoglycoside antibiotics is good, and the risk of tracheal spasm and renal function damage in patients with VAP is not increased.
ObjectiveTo evaluate clinical outcomes of diaphragm plication for the treatment of diaphragmatic paralysis (DP) in infants after surgical correction for congenital heart diseases. MethodsClinical data of 13 infants who had DP after surgical correction for congenital heart diseases from December 2009 to December 2012 were retrospectively analyzed. There were 5 male and 8 female patients with their age of 35 days-11 months (6.6±3.2 months) and body weight of 3.5-9.6 (6.2±1.8) kg. Diaphragm plication was performed 19.08±4.29 days after open heart surgery. All the patients were not able to wean from mechanical ventilation,or were repeatedly reintubated because of severe respiratory failure after extubation. All the 13 patients received diaphragm plication for singleor double-sided DP. ResultsTwo patients had ventilator associated pneumonia (15.4%) including 1 patient with positive sputum cultures for Acinetobacter baumannii but negative blood culture. Another patient who had double-sided DP after surgical correction for tetralogy of Fallot with pulmonary atresia underwent double-sided diaphragm plication and later died of multiple organ dysfunction syndrome,whose sputum and blood cultures were both positive for Pseudomonas aeruginosa on the 11th day after double-sided diaphragm plication. Chest X-ray of all the patients showed plicated diaphragm in normal position after diaphragm plication. The average time from diaphragm plication to extubation was 5.38±3.09 days. After diaphragm plication,arterial partial pressures of oxygen (PaO2) significantly increased (90.22±8.47 mm Hg vs. 80.69±6.72 mm Hg,P<0.05) and arterial partial pressures of carbon dioxide (PaCO2) significantly decreased (39.87±6.31 mm Hg vs. 56.38±7.19 mm Hg,P<0.05). Twelve patients were followed up for 24 months after discharge. During follow-up,1 patient who received double-sided diaphragm plication had 2 episodes of pneumonia within 6 months after discharge. Respiratory function of all the other patients was normal. All the patients were in NYHA class Ⅰ-Ⅱ. ConclusionDiaphragm plication is a safe,easy and effective treatment to increase survival rate and decrease the incidence of hospital-acquired infection for infants who have DP and are unable to wean from mechanical ventilation after surgical correction for congenital heart diseases.
Objective To observe the effects of mechanical stretch on cytokines release from alveolar macrophages( AMs) and the expression of macrophage inflammatory protein-2( MIP-2) induced by lipopolysaccharide( LPS) . Methods AMs were divided into the following groups: ①AMs were subjected to 20% elongation by Flexercell 4000T cell stress system for 24 hours and the supernatant was collected to detect the levels of TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IFN-γ, macrophage inflammatory protein-1α( MIP-1α) , MIP-2, monocyte chemoattractant protein-1( MCP-1) , granulocyte /macrophage colony stimulating factors( GM-CSF) , interferon inducible protein-10( IP-10) , regulated on activation in normal T-cell expressed and secreted( Rantes) and keratinocyte chemoattractant( KC) , by using LiquiChip system. ② AMs were subjected to 5% , 10% , 15% and 20% elongation for 24 hours and the supernatant was collected to detect the levels of MIP-2. ③AMs were subjected to 20% elongation and MIP-2 in supernatant was detected 1, 3,6, 12, and 24 hours later. ④ AMs were subjected to 20% elongation and/ or LPS at a concentration of 10 ng/mL, and MIP-2 in supernatant was detected 24 hours later. Unstretched AMs were used as control in all kind of test. Results ①The levels of IL-1β, IL-6,MIP-2, MCP-1, IFN-γand IP-10 secreted by stretched AMs were 8. 7, 4. 3, 38. 6, 4. 8, 14. 2 and 5. 0 times those of the control group( all P lt; 0. 001) . ② The levels of MIP-2 secreted by AMs subjected to 10% , 15% and 20% elongation were ( 480. 5 ±93. 1) pg /mL,( 806. 3 ±225. 9) pg/mL and ( 1335. 7 ±18. 5) pg/mL respectively, all significantly higher than those oft he control group [ ( 34. 6 ±11. 4) pg/mL, all P lt;0. 001] . ③ Three hours after the stimulation of stretch the level of MIP-2 began to increase gradually. And 6, 12, and 24 hours after the stimulation the levels of MIP-2 secreted by the AMs were ( 819. 4 ±147. 5) pg/mL, ( 1287. 6 ±380 ±3 ) pg/mL and ( 1455. 9 ±436. 7) pg/mLrespectively, all significantly higher than those of the control group[ ( 33. 4 ±10. 2) pg/mL, all P lt; 0. 001] . ④When the AMs were stimulated individually by LPS( 10 ng /mL) or mechanical stretch ( 20% ) , the levels of MIP-2 increased to ( 1026. 3 ±339. 5 ) pg/mL and ( 1335. 7 ±318. 5 ) pg/mL respectively( both P lt; 0. 001) . When the AMs were costimulated by LPS and mechanical stretch, the level of MIP-2 increased to ( 2275. 3 ±492. 1) pg/mL, implicating a synergistic effect between mechanical stretch and LPS ( F = 121. 983, P lt; 0. 001) . Conclusions Mechanical stretch activates AMs to produce multiple inflammatory cytokines and induce AMs to secret MIP-2 in a strength- and time-dependent manner.Mechanical stretch also has synergistic effect with LPS in inducing MIP-2 release, which might play an important role in the development of ventilator-induced lung injury.
Objective To investigate the characteristics of ventilator associated pneumonia (VAP)caused by Stenotrophomonas maltophilia(Sm)in ICU。Methods The clinical data of 39 patients with VAP caused by Sm,from Jan 2001 to Dec 2006,were retrospectively investigated.Results In 15 kinds of antibiotics sensitivity test,all cases showed 100% resistance to 12 kinds of antibiotics except sulfamethoxazole/trimethoprim。ticarcillin/clavulanic acid and ciprofloxacin with sensitivity rate of 46.2% , 30.8% and 12.8% .respectively.92.30% of Sm VAP were CO—infected with other microorganisms and 79.5% of VAP were late-onset.The use of broad-spectrum antibiotics.especially carbapenem.and prolonged mechanical ventilation more than 7 days were risk factors for Sm VAP.Morbidity of Sm VAP was 87.2% .Conclusions Sm VAP has an important role in ICU infections with high morbidity and CO-infection rate.It should be alerted to the possibility of Sm VAP in the case of when prolonged ventilation (gt;7 days)or carbapenem is used.
Objective?To evaluate the diagnostic accuracy of procalcitonin (PCT) for ventilator-associated pneumonia (VAP). Methods?We searched MEDLINE, EMbase, The Cochrane Library, CBM, BIOSIS to identify all diagnostic tests which evaluated the diagnostic value of PCT in patients with VAP. QUADAS items were used to evaluate the quality of the included studies. Pooled sensitivity, specificity, positive likelihood ratio (+LR), negative likelihood ratio (-LR), summary receiver operating characteristic (SROC) curve, and the heterogeneity of the included studies were calculated by using the Meta-disk software. Results?Five studies which were identified from 103 references met the inclusion criteria. The summary sensitivity, specificity, +LR, and –LR values were 0.70 (95%CI 0.62 to 0.77), 0.76 (95%CI 0.69 to 0.82), 5.651 (95%CI 1.237 to 25.810), and 0.349 (95%CI 0.155 to 0.784), respectively. Overall area under the curve (AUC) of SROC curve was 0.884 (DOR=19.416, 95%CI 2.473 to 152.47), demonstrating significant heterogeneity (I2gt;50%). Conclusion?The use of PCT for VAP diagnosis has only a moderate sensitivity and specificity. Although the overall accuracy of VAP diagnosis is relatively high, there is significant heterogeneity between the studies, so more high-quality studies are needed. Besides, using PCT alone to diagnose VAP is not sufficient, and a combination with other clinical evaluations is necessary.
This article introduces development methods and notices about evidence-based clinical practice guidelines of ventilator-associated pneumonia (VAP) and discuss the similarities and differences between GRADE system and the methodological studies of other clinical guidelines, focusing on the analysis of literature retrieval, quality of evidence, formation of recommendation strength, and detailed measures on how to ensure correct understanding and rationally using the GRADE system. Applying the GRADE system to develop evidence-based clinical practice guidelines of VAP could clearly present the quality of evidence and make recommendations.
Objective To explore the efficacy of continuous lateral rotation therapy ( CLRT) for the prevention of ventilator associated pneumonia ( VAP) . Methods Database of Medline and SinoMed were searched. Randomized and controlled trials assessing the efficacy of CLRT vs. placebo or conventional treatment for the prevention of VAP were included. Data were extracted on study population, exclusion and inclusion criteria, diagnostic criteria of VAP, incidence of VAP, ICU mortality, ICU length of stay, andduration of mechanical ventilation. The VAP incidence and mortality were extracted as dichotomous variables and the other parameters were extracted as continuous variables. The pooled analyses of VAP incidence and mortality were performed by using Review Manager 5. 0 software. The heterogeneity was analyzed by thestatistic I2 . Results A total of 5 clinical trials met the inclusion criteria. CLRT could reduce the incidence of VAP ( OR=0. 50,95% CI 0. 32-0. 78) , and the heterogeneity was not statistically significant. The impact of CLRT on the ICU mortality was insignificant. The ICU length of stay and duration of mechanical ventilationwere not significantly different between CLRT and control groups. Conclusion CLRT is beneficial for the prevention of VAP, whereas its impacts on other clinical outcomes such as the ICU mortality, ICU length of stay, and duration of mechanical ventilation require further investigations.
Objective To determine the effect of closed tracheal suction system versus open tracheal suction system on the rate of ventilator-associated pneumonia in adults. Methods We searched The Cochrane Library (Issue 1, 2007), PubMed (1966 to 2006) and CBM (1980 to 2007), and also hand searched relevant journals. Randomized controlled trials involving closed tracheal suction system versus open tracheal suction system for ventilator-associated pneumonia in adults were included. Data were extracted and the quality of trials was critical assessed by two reviewers independently. The Cochrane Collaboration’s RevMan 4.2.8 software was used for data analyses. Result Five randomized controlled trials involving 739 patients were included. Results of meta-analyses showed that compared to open tracheal suction system, closed tracheal suction system did not increase the rate of ventilator-associated pneumonia (RR 0.83, 95%CI 0.50 to 1.37) or case fatality (RR 1.05, 95%CI 0.85 to 1.31). No significant differences were observed between open tracheal suction system and closed tracheal suction system in the total number of bacteria (RR 0.83, 95%CI 0.50 to 1.37), the number of SPP colony (RR 2.87, 95%CI 0.94 to 8.74) and the number of PSE colony (RR 1.46, 95%CI 0.76 to 2.77). There was no significant difference between the two groups in the duration of ventilation and length of hospital stay. Conclusion Open or closed tracheal suction systems have similar effects on the rate of ventilator-associated pneumonia, case fatality, the number of SPP and PSE colonies, duration of ventilation and length of hospital stay. However, due to the differences in interventions and statistical power among studies included in this systematic review, further studies are needed to determine the effect of closed or open tracheal suction systems on these outcomes.