ObjectiveTo establish an efficient method of isolating and culturing high activity and high purity of Schwann cells, and to identify the cells at the levels of transcription and translation. MethodsThe sciatic nerves harvested from a 4-week-old Sprague Dawley rat were digested in the collagenase I for 15 minutes after dissecting, and then the explants were planted in culture flask directly. The cells were cultured and passaged in vitro, the growth state and morphological changes of the cells were observed under inverted phase contrast microscope. MTT assay was used to test the proliferation of cells and the cells growth curve was drawn. RT-PCR and immunohistochemistry staining were used to detect S100 and glial fibrillary acidic protein (GFAP) at the levels of transcription and translation, respectively. The purity of cells was caculated under microscope. ResultsAfter the digestion of collagenase I, fibroblast-like cells appeared around explants within 24 hours, with slender cell body and weak refraction. After tissues were transferred to another culture flask, a large number of dipolar or tripolar cells were seen after 48 hours, with slender ecphyma, plump cell body, and b refraction, and the cells formed colonies within 72 hours. The cells were covered with the bottom of culture flask within 48-72 hours after passaging at a ratio of 1∶2, and spiral colonies appeared. Cells showed vigorous growth and full cytoplasm after many passages. MTT assay results showed that the cells at passage 3 entered the logarithmic growth phase on the 3rd day, reached the plateau phase on the 7th day with cell proliferation, and the growth curve was “S” shape. RT-PCR results showed that the cells expressed S100 gene and GFAP gene, and immunohistochemistry staining showed that most of the cells were positively stained, indicating that the majority of cells expressing S100 protein and GFAP protein. The purity of Schwann cells was 98.37% ± 0.30%. ConclusionHigh activity and high purity of Schwann cells can be acquired rapidly by single-enzyme digestion and explant-culture method.
Abstract In case of sciatic nerve injury, there is degeneration of neuron in the corresponding segment of spinal cord. To study whether NGF could protect the dorsal root ganglia in this situation, the following experiments were performed: 72 SD mice were divided into 2 groups. In each mouse, the sciatic nerve was sectioned at the middle of the right thigh, and then,the proximal end of the sciatic nerve was inserted into a one ended silastic tube. The NGF 0.15ml (contain 2.5S NGF 0.15mg) was injected into the tubes of the experimental group, while a equal amount of normal saline was injected into the tubes of the control group. After 1, 3, 5, 9, 20 and 30 days, 6 mice of each groupwere sacrificed respectively, and 5th to 6th lumbar segments of the spinal cords were resected for examination. By histochemical study, the activity of fluoride resistant acid phosphatase (FRAP) of each animal was detected. The results showed: (1) Excision of the sciatic nerve led to decrease of FRAP activity, it suggested that the injury of sciatic nerve could damage the dorsal root ganglia; (2) The use of exogenous NGF could protect the FRAP activity. It was concluded that NGF played an important role in protecting the dorsal root ganglia in peripheral nerve injury, in vivo.
Objective To evaluate an effect of the vascularendothelial growth factor (VEGF) geneactivated matrix (GAM) on repair of the sciatic nerve defect in rats. Methods The peripheral nerve extracellular matrix(ECM) was harvested by the chemical extraction from 30 SD rats. The VEGF-GAM comprised of ECM and the plasmids encoding VEGF. Thirty adult Wistar rats were made as a model of the asciatic nerve defect and were randomly divided into the following 3 groups(n=10): Group A (VEGF-GAM conduits), Group B (ECM conduits),and Group C (autografts). At 12 weeks, the rats from each groupwere subjected to an inspection for the walking tract analysis and electrophysiological and histomorphological studies.Results The VEGF DNA could be retained in GAM, promoting the transgene expressing in the sciatic nerve, and more importantly, in the axotomized neurons in the spinal cord for 12 weeks. The motor neuron recovery rate in Group A (79.13%±2.53%) was similar to that in Group C (75.26%±4.48%, Pgt;0.05), but significantly better than that in Group B (56.09%±1.89%, Plt;0.01). The number of the regenerationaxons in the distal sciatic nerve in Group A (13 463±794/mm2) was significantly lower than that in Group C (16 809±680/mm2, Plt; 0.01), but significantly higher than that in Group B (10 260±1 117/mm2,Plt;0.01). The motor nerve conduction velocity in Group A (16.44±1.65 m/s) was significantly lowerthan that in Group C (23.79±2.75 m/s, Plt;0.01), but significantly higherthan that in Group B (12.8 ±1.42 m/s, Plt;0.01). The recovery rate of thegastrocnemius muscle wet weight in Group A (71.40%±3.05%) was significantlylower than that in Group C (87.00%±1.87%,Plt;0.01), but significantly higher than that in Group B (50.00%±4.90%, Plt;0.01). The sciatic nerve function index in Group A (39.37%±4.81%) was significantly lower 〖KG6〗than that in Group C (26.27%±2.71%, Plt;0.01), but significantly higher than that in Group B (4693%±296%, Plt;0.01). Conclusion The results indicate that VEGF-GAM as a bridge can promote the functional recovery of the defected sciatic nerve in rats, but the effect is not so good as that by autografts.
ObjectiveTo investigate the regularity of myelin degeneration and regeneration and the difference of axonal density between tibial nerve and common peroneal nerve after sciatic nerve injury repair in rhesue monkey. MethodsNine adult rhesue monkeys (male or female, weighing 3.5-4.5 kg) were selected to establish the model of rat sciatic nerve transaction injury. The tibial nerve and common peroneal nerve of 5 mm in length were harvested at 5 mm from injury site as controls in 3 monkeys; the distal tibial nerve and common peroneal nerve were repaired with 9-0 suture immediately in the other 6 monkeys. And the gross observation and neural electrophysiological examination were performed at 3 and 8 weeks after repair respectively. Then, distal tibial nerve and common peroneal nerve at anastomotic site were harvested to observe the myelin sheath changes, and to calculate the number of axon counts and axonal density by staining with Luxol Fast Blue. ResultsAtrophy of the lower limb muscle and various degrees of plantar ulcer were observed. Gross observation showed nerve enlargement at anastomosis site, the peripheral connective tissue hyperplasia, and obvious adhesion. The compound muscle action potential (CMAP) of tibial nerve and common peroneal nerve could not be detected at 3 weeks; the CMAP amplitude of common peroneal nerve was less than that of the tibial nerve at 8 weeks. Different degrees of axonal degeneration was shown in the tibial nerve and common peroneal nerve, especially in the common peroneal nerve. The average axonal density of common peroneal nerve was lower than that of tibial nerve at 3 weeks (13.2% vs. 44.5%) and at 8 weeks (10.3% vs. 35.3%) after repair. ConclusionThe regeneration of tibial nerve is better and faster than that of common peroneal nerve, and gastrocnemius muscle CMAP recovers quicker, and amplitude is higher, which is the reason of better recovery of tibial nerve.
Objective To construct adenovirus expressing NGF (Ad-NGF) and to investigate its promotive effect on the reparation and regeneration of sciatic nerve injury in rats. Methods NGF gene sequence was cloned into shuttle plasmid pCA13 of adenovirus type 5. After packed in HEK-293 cells, the recombinant adenoviruses-Ad-NGF underwent sequence identification. Thirty-two male SD rats weighing 180-200 g were randomly divided into 4 groups (n=8 rats per group). Sciatic nerve injury model was establ ished by disconnecting and direct suturing the right sciatic nerve in the rat. Theright gastrocnemius muscle of group A and C received Ad-NGF injection and adenovirus vector without NGF gene sequence injection, respectively, and 1 × 108 PFU/per time was given every other day for three times. Group B and D received NGF injection (200 U/d) and normal sal ine (100 ?L/d), respectively, for 3 weeks. The effect of various treatments on injured sciatic nerve was evaluated by performing sciatic nerve function index and nerve electrophysiology detections 31 days after operation. Meanwhile, the sciatic nerve in the anastomosis and at the site 1 cm distal to the anastomosis were obtained, and underwent RTPCR and Western blot analysis for detecting NGF mRNA and protein expression level in the injured sciatic nerve in the rats. Histology, immunohistochemistry, and transmission electron microscope observations were conducted. Results Ad-NGF carrying NGF gene sequence was constructed successfully and confirmed by sequence analysis. The sciatic nerve function index, nerve conduction velocity, evoked potential ampl itude, and latent period of group A was better than those of other groups (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). RT-PCR and Western blot detection: the expression levels of NGF mRNA and protein in group A were greater than those of group B, C, and D (P lt; 0.05), and no significant differences were noted among group B, C, and D (P gt; 0.05). Histology and immunohistochemistry observation showed that the regeneration of the sciatic nerve in group A was obvious superior to that of other groups. Transmission electron microscopy observation suggested there was significant difference between group A and groups B, C, and D in terms of axonal diameter of sciatic nerve cross-section, myel in sheath thickness and nerve fiber number (P lt; 0.05), and there were no significant differences among group B, C, and D (P gt; 0.05). Conclusion Ad-NGF can effectively promote the repair of sciatic nerveinjury in rats, and is a new method for obtaining large amounts of NGF in the area of injured peripheral nerve.
OBJECTIVE To probe the possibility of direct transfer of exogenous gene into peripheral nerve and its following expression in vivo. METHODS The PCMV beta plasmid containing cytomegalovirus (CMV) promoter and Escherichia Coli (E. Coli), beta-Galactosidease (beta-Gal) structural gene (lacZ gene) was constructed and injected into the rabbit sciatic nerve. The control group was injected PBS solution. The injected nerves were sampled and tested by beta-Gal enzyme activity assay of the 5-bromo-4-chloro-3-indolyl-beta-D-galactoside and beta-Gal histochemical stain. RESULTS In the control group, no beta-Gal enzyme activity was detected in the different stages after operation, and beta-Gal histochemical stains showed positive. In the experimental group, enzyme activity could be detected from 2 days to 30 days after operation, and the histochemical stains showed negative. CONCLUSION The exogenous gene can be transferred into peripheral nerve and expressed with bioactivity, thus the gene therapy to accelerate the recovery of nerve is practical.
Objective To compare their competence of olfactory epithel ial gl iacytes, olfactory globular nerve layer (OGNL) gl iacytes and SC in repair nerve defect of sciatic nerve, and select the best gl iacytes for repair of peri pheral nerve defect. Methods Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC were extracted from 20 female Wistar rats aged 2-3 months and cultured in vitro for 2 weeks, then purified and condensed for transplantation. Eighty adult female Wistar rats were randomized into groups A, B, C and D (n=20). The left sciatic nerves were excised 25 mm axons and retained epineuriumlumen anastomosed to proximal ends. The culture mediums, SC, OGNL gl iacytes, and olfactory epithel ial gl iacytes weretransplanted into the epineurium lumen of groups A, B, C and D, respectively. Three months postoperatively, the injured sciatic nerve regeneration was evaluated by methods of macroscopic observation, photomicroscope, transmission electron microscope, retro-marked fluorescence transportation distance, the gl ial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) were assayed by immunofluorescence, and the myel in basic protein (MBP) and neurofilament (NF) protein were assayed by ELISA. Results The scores of ankle joint were (3.325 ± 0.963), (4.200 ± 1.005), (5.143 ± 0.635) and (5.950 ± 0.154) in groups A, B, C and D, respectively; showing statistically significant difference between groups (P lt; 0.05). The obse vations of gross, sections under microscope and transmission electron microscope showed the regeneration of defect nerve was best in group D, followed by group C, and group B was superior to group A. The transportation distance of retro-marked fluorescence was longest in group D, followed by group C, and group B was superior to group A. The concentrations of GFAP and NGF were largest in group D, followed by group C, and group B was superior to group A. The MBP concentrations were (9.817 ± 3.267), (12.347 ± 3.091), (14.937 ± 2.075) and (22.757 ± 0.871) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between other groups (P﹤0.05) except between group A and group B (P gt; 0.05). And the NF concentrations were (13.869 ± 5.677), (18.498 ± 3.889), (23.443 ± 2.260) and (27.610 ± 1.125) ng/mL in groups A, B, C and D, respectively; showing statistically significant difference between groups (P﹤0.05). Conclusion Olfactory epithel ial gl iacytes, OGNL gl iacytes and SC transplantation could repair injured nerve. The competence of olfactory epithel iums is superior to the OGNL gl iacytes andSC, and the OGNL gl iacytes is better than SC.
OBJECTIVE To investigate the effects of basic fibroblast growth factor(bFGF) on repairing transected sciatic nerves in rats. METHODS The animal models of the transected sciatic nerve of 40 SD rats were established, which divided into 4 groups: normal saline (NS) group, nerve growth factor (NGF) group, bFGF group and normal control group. The epineurium of the transected sciatic nerve was sutured under microscope, then bFGF or NGF was dropped into local sites and injected intramuscularly once a day for 30 days after operation. Functional repair for the transected sciatic nerves was studied by nerve conductive velocity (NCV) and sciatic nerve function index (SFI). RESULTS As a criterion, the level of the normal control group was regarded as zero, SFI of NS group, NGF group and bFGF group were -114.30 +/- 10.34, -70.50 +/- 11.01, -50.45 +/- 7.82 respectively at 1 month after operation, and they were -54.96 +/- 16.46, -35.21 +/- 10.80, -27.53 +/- 11.23 respectively in 3 months after operation. NCV of bFGF group was significantly faster than NS group and NGF group. CONCLUSION bFGF can significantly promote the functional repair of injured peripheral nerve, and its effects are better than NGF.
Objective To observe the result of reconstructing quadriceps femoris function in the paraplegia rats by using the 7th cervical nerve root (C7) transposition with autologous and allogeneic neural transplantation. Methods Twenty16-week-old SPF male Wistar rats were adopted to prepare frozen sciatic nerve. Thirty-six Wistar rats were divided into 2 groups (group A and group B, n=18). The left paraplegia model was establ ished with left spinal cord hemisection by the micro scissors under the operation microscope. After the model establ ishment, the homolateral autologous sciatic nerve was bridged with the femoral nerve root by the translocation of C7 in group A, while the allogeneic sciatic nerve was bridged with the femoral nerve root by the translocation of C7 in group B. At 16 weeks and 24 weeks after operation, 9 rats in each group were selected for the neuroelectric-physiological test and then the histomorphology of the nerves was observed under the microscope and the electron microscope. The fresh weight recovery rate of quadriceps femoris was calculated. Results At 16 and 24 weeks after operation, the nerve action-evoked potential (NAP) was (1.14 ± 0.07) mV and (1.21 ± 0.07) mV in group A, and (0.87 ± 0.06) mV and (0.99 ± 0.05) mV in group B; the nerve conduction velocity (NCV) was (17.34 ± 2.15) m/s and (19.00 ± 3.02) m/s in group A, and (11.23 ± 1.45) m/s and (12.54 ± 1.59) m/s in group B, respectively, indicating significant differences (P lt; 0.05) between 2 groups. At 16 and 24 weeks after operation, HE staining and Bielschowsky staining showed that group A had a large number of nerve fiber regeneration, with a regular arrange of axons; while group B had l ittle nerve fiber regeneration with a scattered arrange of axons. At 24 weeks after operation, images in TEM showed a large number of regeneration myel inated nerve fibers and a small number of unmyel inated nerve fibers through the transplanted nerve in two groups. At 16 weeks after operation, the number of myel inated nerve fibers in group A and group B was (438 ± 79) and (196 ± 31) / vision, the areas of myel inated nerve fiberswere (5 596.00 ± 583.94) and (4 022.63 ± 615.75) μm2 / vision; after 24 weeks, the number of myel inated nerve fibers in groups A and B were (642 ± 64) and (321 ± 75)/vision, the areas of myel inated nerve fibers were (6 689.50 ± 1 142.10) and ( 4 733.00 ± 982.22) μm2/vision, indicating significant differences between two groups (P lt; 0.05). There was no statistically significant difference (P gt; 0.05) in the wet weight recovery rate of quadriceps between group A and group B at 16 weeks (87.96% ± 4.93% vs. 86.47% ± 7.47%) and at 24 weeks after operation (90.10% ± 4.22% vs. 87.66% ± 3.14%). Conclusion C7 transposition combined with autograft and allograft of sciatic nerve can reconstruct the partial function of the quadriceps femoris in paraplegia rats. The effect of graft is better than that of graft obviously.
In order to understand the change of free radicals in the course of injury and regeneration of nerve, the sciatic nerve of Wistar rat was crushed to, prepare the model of nerve injury and measured the content of Malondialdehyde (MDA) and superoxide dismutase (SOD) of the nerve. Thirty rats were used in this study. The sciatic nerve on one side was crushed, the contralateral sciatic nerve was served as control. According to the time of assessment (2,4,6,11,21 days after crushing), the rats were divided into 5 groups. The MDA concentration of the controlwas 19.65±0.27 and that of the crushing groups at different time were 21.25±0.36, 21.98±0.35, 22.77±0.38, 23.73±0.13, 23.92±0.44, respectively (nmol/100mg pro, x±s), while the SOD concentration of the control was 119.18±0.58 and that of the crushing groups at different time were 144.85±1.70, 136.14±1.71, 130.58±0.57, 126.41±0.98, 122.36±0.79, respectively (ug/mg pro, x±s), In the experimental groups, all the MDA concentrations were markedly higher than that of the control Plt;0.01, t-test) and tended to increase with the time passing by. The SOD concentrations in the experimental groups were also higher than that of the control Plt;0.01, t-test) and tended to decrease with the time passing on. The study suggested that after crushing or ligation of the nerve, the free radicals would increase.