Retinal neuronal cells are crucial in the formation of vision. Injury or death of these cells may lead to irreversible damage to visual function due to their low regenerative capacity. The P2X7 receptor is a trimeric adenosine triphosphate (ATP)-gated cation channel. Recent studies have shown that P2X7 receptor plays a role in retinal neuronal death. In a series of animal models, when exposed to conditions of hypoxia or ischemia, elevated ocular pressure, trauma and exogenous agonists, P2X7 receptor activated by extracellular ATP can cause death of retinal neuronal cells such as retinal ganglion cells and photoreceptor cells through direct or indirect pathways. Blocking the expression and function of P2X7 receptor by its specific antagonist and gene knocking-out, the loss of retinal neuronal cells is significantly attenuated. P2X7 receptor may become a potential novel neuroprotective target for diseases related to the loss of retinal neurons.
ObjectiveTo observe the serum vascular endothelial growth factor (VEGF), apelin and heme oxygenase-1 (HO-1) levels in patients with type 2 diabetes mellitus (T2DM) and to explore their their relationship with diabetic retinopathy (DR).MethodsA total of 208 patients with T2DM and 50 healthy subjects (control group) from the Central Hospital of Western Hainan during January 2014 and December 2017 were selected in this study. Vision, slit lamp microscope, indirect ophthalmoscope and FFA examinations were performed on all the subjects. According to the results of the examinations combined with the DR clinical staging criteria, the patients were divided into non-DR (NDR) group, non-proliferative DR (NPDR) group, and proliferative DR (PDR) group, with 72, 76 and 60 patients in each, respectively. The clinical data of each group were recorded, and the levels of fasting blood glucose (FPG), HbA1c, total cholesterol (TC), three acylglycerol (TG), high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), VEGF, apelin and HO-1 were detected in each group. The receiver operating characteristic curve (ROC) were used to analyze the value of VEGF, apelin and HO-1 in predicting the occurrence of PDR. Correlation analysis of serum VEGF, Apelin and HO-1 with clinical parameters in PDR patients by Pearson correlation analysis.ResultsThe level of VEGF (56.82±10.16 vs 91.74±22.83, 140.15±36.40, 195.28±42.26 pg/ml) and apelin (2.95±0.53 vs 4.68±0.74, 7.25±1.13, 10.16±1.35 ng/ml) in PDR group were significantly higher than those in NPDR, NDR and control groups (F=17.306, 21.814; P<0.05). The level of HO-1 (50.37±10.14 vs 43.58±8.16, 30.25±6.28, 22.60±4.72 mmol/L) in PDR group was significantly lower than those in NPDR, NDR and control groups (F=15.827, P<0.05). The ROC curve analysis showed that the best cut-off values of serum VEGF, apelin and HO-1 were 162.50 pg/ml, 8.30 ng/ml, 27.13 mmol/L, and the three combined to predict PDR of AUC (95%CI) was 0.906 (0.849?0.962), and their sensitivity (90.3%) and specificity (83%) were better. The correlation analysis showed that the VEGF, apelin and HO-1 of PDR patients were correlated with the course of diabetes (r=0.382, 0.416, ?0.36; P<0.05), FPG (r=0.438, 0.460, ?0.397; P<0.05) and HbAlc (r=0.375, 0.478, ?0.405; P<0.05), and the serum VEGF were correlated with apelin and HO-1 (r=0.793, ?0.594; P<0.01).ConclusionElevated serum VEGF and apelin levels and reduced HO-1 levels are associated with the progression of DR, and the three combination helps predict the occurrence of PDR.
Proliferative vitreoretinopathy (PVR) is a common complication and major cause of blindness of ocular trauma. Many cytokines, including vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), participate in the process of the pathogenesis of traumatic PVR. VEGF competitively inhibits binding of PDGF to its receptor (PDGFRα), enables indirect activation of PDGFRα by non-PDGF ligands, resulting in reduced p53 expression, cell proliferation and migration, which is a key point in the pathogenesis of traumatic PVR.
ObjectiveTo investigate the protective effects of glycine on rat sinusoidal endothelial cells (SECs) after hepatic warm ischemiareperfusion and its mechanism.MethodsSeventytwo male SD rats were randomly divided into the normal control,ischemiareperfusion,glycine plus strychnine treated and glycine treated groups. The changes of endothelin (ET),hyaluronic acid (HA),tumor necrosis factorα (TNFα) content and alanine aminotransterase (ALT), superoxide dismutase (SOD) activity as well as morphology of SECs under light microscope were observed at the time point 1,3,24 h after hepatic reperfusion. The effects of glycine on the above parameters were also observed. ResultsThe group using glycine treated, the abnormal changes of all above parameters were improved remarkably (P<0.01 or P<0.05). Strychnine can antagonize these effects partly.ConclusionGlycine can prevent the injury to rat SECs after hepatic warm ischemiareperfusion.It most likely acts through glycine receptor on SECs and Kupffer cells.
Objective Lots of metal ions accumulation and over-expression of receptor activator of NF-κB l igand (RANKL) around the prosthesis could be found in revision of total hip arthroplasty. To investigate the relationship between metal ions and aseptic loosening by observing the effects of Co2+ and Cr3+ ions on the expression of RANKL and osteoprotegerin(OPG) from osteoblast. Methods Osteoblasts were cultured in vitro at the density of 1 × 105 cells/mL, and were divided into 2 groups according to different culture solutions. In control group, osteoblasts were cultured with normal medium without CoCl2 and CrCl3. In experimental group, osteoblasts were cultured with the medium including CoCl2 (10 mg/ L) and CrCl3 (150 mg/L) solutions. The RT-PCR and ELISA methods were appl ied to detect the mRNA expression of RANKL and OPG and protein level at 24 and 48 hours after co-cultured, respectively. Results RT-PCR revealed that the mRNA expression of RANKL and OPG could be found in two groups at 24 and 48 hours after co-cultured, the expression was higher in the experimental group than in control group, especially the expression of RANKL, showing significant difference (P lt; 0.05). At 24 and 48 hours after co- cultured, the ratios of RANKL mRNA to OPG mRNA in the experimental group were 0.860 and 1.232, respectively, which were significantly higher than those in the control group (0.695 and 0.688,P lt; 0.05). ELISA revealed that the protein level of RANKL and OPG in experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion Co2+ and Cr3+ can stimulate the mRNA expressions of RANKL, OPG and secretion of those protein from osteoblasts, especially increase of the RANKL, which promotes the formation and activation of osteoblasts and the generation of aseptic loosening.
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, and it is the main cause of vision loss in diabetic patients. Angiopoietin (Ang), a superfamily of secreted proteins, is a vascular growth factor that regulates the stability of vascular environment, participates in angiogenesis and repair, and lipid metabolism. It plays an important role in the development of DR and has become a new target for the treatment of diabetic retinopathy. With the in-depth study of Ang and the research and development of various drugs for Ang, it is expected to bring new ideas and strategies for the treatment of DR in the future.
For the purpose of understanding the distribution of insulin-like growth factor-1 (IGF-1) receptor on the tendon cell, the continuous cultured tendon cell line was studied by following experiments. With the methods of immunohistochemical study and flow cytometric study, the density of IGF-1 receptor of the primary, 6th and 13th generation of tendon cell was analyzed. The results showed that there was no difference of the receptor density among those generations. However, in the cell cycle, the numbers of IGF-1 receptor in G2M phase tendon cells were more than that in G1 phase cells (P lt; 0.01). These works provided sufficient evident which suggested there were stable density of IGF-1 receptor on the tendon cell though out the life span of tendon cell. This may build some foundation in growth control of tendon cell by growth factor in the research of tendon tissue engineering.
Mesenchymal stem cells (MSC) are considered to have important value in the treatment of various diseases because of their low immunogenicity, transferability, and strong tissue repair capacity. Stromal cell derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) pathway plays an important role in migration of MSC. The induction of homing of MSC to retina by regulating SDF-1/CXCR4 may exert the curative effect on diabetic retinopathy to greatest exent.
ObjectiveTo evaluate the association between the Single Nucleotide Polymorphism (SNP) BsmI (rs1544410) in the vitamin D receptor gene and the susceptibility of coronary artery disease. MethodsDatabases including PubMed, Web of Science, CNKI, WanFang Data, VIP and CBM were searched from inception to May, 2016 to collect case-control studies about SNP BsmI (rs1544410) in the vitamin D receptor gene and the susceptibility of coronary artery disease. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of included studies. Then Meta-analysis was performed by using RevMan 5.3. ResultsA total of seven studies were included, which involved 2182 patients and 5925 controls. The results of meta-analyses showed that the B allele and BB genotype in rs1544410 was associated with the risk of coronary artery disease (B vs. b:OR=1.36, 95%CI 1.03 to 1.79, P=0.03; BB vs. bb:OR=1.70, 95%CI 1.06 to 2.72, P=0.03; BB+Bb vs. bb:OR=1.52, 95%CI 1.00 to 2.30, P=0.05). Subgroup analysis by age showed that rs1544410 was associated with the risk of coronary artery disease in the age <65(B vs. b:OR=1.65, 95%CI 1.00 to 2.73, P=0.05; BB vs. Bb+ bb:OR=1.79, 95%CI 1.08 to 2.97, P=0.02; BB vs. bb:OR=2.64, 95%CI 1.12 to 6.25, P=0.03). Subgroup analysis by ethnicity showed that rs1544410 was associated with the risk of coronary artery disease in Caucasians (B vs. b:OR=1.47, 95%CI 1.10 to 1.97, P=0.01; BB+Bb vs. bb:OR=1.71, 95%CI 1.09 to 2.68, P=0.02; BB vs. Bb+bb:OR=1.39, 95%CI 1.01 to 1.92, P=0.05; BB vs. bb:OR=1.80, 95%CI 1.10 to 2.95, P=0.03). Subgroup analysis by genotyping methods showed that rs1544410 was associated with the risk of coronary artery disease in the TaqMan (B vs. b:OR=2.18, 95%CI 1.06 to 4.45, P=0.03; BB+Bb vs. bb:OR=3.32, 95%CI 1.06 to 10.40, P=0.04; BB vs. bb:OR=3.31, 95%CI 1.06 to 10.30, P=0.04). Subgroup analysis by diagnostic criteria for cases showed that rs1544410 was associated with the risk of coronary artery disease in the ECG (B vs. b:OR=1.15, 95%CI 1.02 to 1.29, P=0.02; BB+Bb vs. bb:OR=1.22, 95%CI 1.02 to 1.45, P=0.03; BB vs. bb:OR=1.31, 95%CI 1.03 to1.67, P=0.03). ConclusionBsmI (rs1544410) B allele may have a significant association with the high risk of coronary artery disease especially the Caucasians and the ones with age <65.
Objective To investigate the polymorphism of the vitamin D receptor gene (VDR)TaqⅠin relation to diabetic retinopathy. Method Fragment length discrepant allele specific PCR(FLDAS-PCR) were used to determine VDR genetypes in 158 patients with diabetic retinopathy and in 198 normal subjects. Results The frequency distribution of VDR genotypes in diabetic retinopathy patients was 106 (67.1%) in TT, 33(20.9%) in Tt, 19(12.0%) in tt; and in normal persons was 165 (83.3%) in TT, 23(11.6%) in Tt, 10 (5.1%) in tt. There was a significant difference between diabetic retinopathy patients and normal persons in distribution of VDR gene TaqⅠgenotypes(Plt;0.05). Conclusions There is some distribution alterations of VDR gene polymorphism in diabetic retinopathy patients. (Chin J Ocul Fundus Dis, 2006, 22: 94-96)