Objective To explore the recognition capabilities of electronic nose combined with machine learning in identifying the breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine (TCM) syndrome elements. MethodsThe study design was a single-center observational study. General data and four diagnostic information were collected from 108 patients with pulmonary nodules admitted to the Department of Cardiothoracic Surgery of Hospital of Chengdu University of TCM from April 2023 to March 2024. The patients' TCM disease location and nature distribution characteristics were analyzed using the syndrome differentiation method. The Cyranose 320 electronic nose was used to collect the odor profiles of oral exhalation, and five machine learning algorithms including random forest (RF), K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGBoost) were employed to identify the exhaled breath profiles of benign and malignant pulmonary nodules and different TCM syndromes. Results(1) The common disease locations in pulmonary nodules were ranked in descending order as liver, lung, and kidney; the common disease natures were ranked in descending order as Yin deficiency, phlegm, dampness, Qi stagnation, and blood deficiency. (2) The electronic nose combined with the RF algorithm had the best efficacy in identifying the exhaled breath profiles of benign and malignant pulmonary nodules, with an AUC of 0.91, accuracy of 86.36%, specificity of 75.00%, and sensitivity of 92.85%. (3) The electronic nose combined with RF, LR, or XGBoost algorithms could effectively identify the different TCM disease locations and natures of pulmonary nodules, with classification accuracy, specificity, and sensitivity generally exceeding 80.00%.ConclusionElectronic nose combined with machine learning not only has the potential capabilities to differentiate the benign and malignant pulmonary nodules, but also provides new technologies and methods for the objective diagnosis of TCM syndromes in pulmonary nodules.
Objective To explore the efficacy of a novel detection technique of circulating tumor cells (CTCs) to identify benign and malignant lung nodules. Methods Nanomagnetic CTC detection based on polypeptide with epithelial cell adhesion molecule (EpCAM)-specific recognition was performed on enrolled patients with pulmonary nodules. There were 73 patients including 48 patients with malignant lesions as a malignant group and 25 patients with benign lesion as a benign group. There were 13 males and 35 females at age of 57.0±11.9 years in the malignant group and 11 males and 14 females at age of 53.1±13.2 years in the benign group. e calculated the differential diagnostic efficacy of CTC count, and conducted subgroup analysis according to the consolidation-tumor ratio, while compared with PET/CT on the efficacy. Results CTC count of the malignant group was significantly higher than that of the benign group (0.50/ml vs. 0.00/ml, P<0.05). Subgroup analysis according to consolidation tumor ratio (CTR) revealed that the difference was statistically significant in pure ground glass (pGGO) nodules 1.00/mlvs. 0.00/ml, P<0.05), but not in part-solid or pure solid nodules. For pGGO nodules, the area under the receiver operating characteristic (ROC) curve of CTC count was 0.833, which was significantly higher than that of maximum of standardized uptake value (SUVmax) (P<0.001). Its sensitivity and specificity was 80.0% and 83.3%, respectively. Conclusion The peptide-based nanomagnetic CTC detection system can differentiate malignant tumor and benign lesions in pulmonary nodules presented as pGGO. It is of great clinical potential as a noninvasive, nonradiating method to identify malignancies in pulmonary nodules.
ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.
Surgical resection is the only radical method for the treatment of early-stage non-small cell lung cancer. Intraoperative frozen section (FS) has the advantages of high accuracy, wide applicability, few complications and real-time diagnosis of pulmonary nodules. It is one of the main means to guide surgical strategies for pulmonary nodules. Therefore, we searched PubMed, Web of Science, CNKI, Wanfang and other databases for nearly 30 years of relevant literature and research data, held 3 conferences, and formulated this consensus by using the Delphi method. A total of 6 consensus contents were proposed: (1) Rapid intraoperative FS diagnosis of benign and malignant diseases; (2) Diagnosis of lung cancer types including adenocarcinoma, squamous cell carcinoma, others, etc; (3) Diagnosis of lung adenocarcinoma infiltration degree; (4) Histological subtype diagnosis of invasive adenocarcinoma; (5) The treatment strategy of lung adenocarcinoma with inconsistent diagnosis on degree of invasion between intraoperative FS and postoperative paraffin diagnosis; (6) Intraoperative FS diagnosis of tumor spread through air space, visceral pleural invasion and lymphovascular invasion. Finally, we gave 11 recommendations in the above 6 consensus contents to provide a reference for diagnosis of pulmonary nodules and guiding surgical decision-making for peripheral non-small cell lung cancer using FS, and to further improve the level of individualized and precise diagnosis and treatment of early-stage lung cancer.
The widespread application of low-dose computed tomography (LDCT) has significantly increased the detection of pulmonary small nodules, while accurate prediction of their growth patterns is crucial to avoid overdiagnosis or underdiagnosis. This article reviews recent research advances in predicting pulmonary nodule growth based on CT imaging, with a focus on summarizing key factors influencing nodule growth, such as baseline morphological parameters, dynamic indicators, and clinical characteristics, traditional prediction models (exponential and Gompertzian models), and the applications and limitations of radiomics-based and deep learning models. Although existing studies have achieved certain progress in predicting nodule growth, challenges such as small sample sizes and lack of external validation persist. Future research should prioritize the development of personalized and visualized prediction models integrated with larger-scale datasets to enhance predictive accuracy and clinical applicability.
ObjectiveTo explore and analyze the risk factors of pleural invasion in patients with small nodular type stage ⅠA pulmonary adenocarcinoma.MethodsFrom June 2016 to December 2017, 168 patients with small nodular type stage ⅠA pulmonary adenocarcinoma underwent surgical resection in the First Affiliated Hospital of Nanjing Medical University. There were 59 males and 109 females aged 58.7±11.5 years ranging from 28 to 83 years. The clinical data were analyzed retrospectively. Single factor Chi-square test and multivariate logistic regression were used to analyze the independent risk factors of pleural invasion.ResultsAmong 168 patients, 20 (11.9%) were pathologically confirmed with pleural invasion and 148 (88.1%) with no pleural invasion. Single factor analysis revealed significant differences (P<0.05) in nodule size, nodule status, pathological type, relation of lesion to pleura (RLP), distance of lesion to pleura (DLP), epidermal growth factor receptor (EGFR) mutation between patients with and without pleural invasion in stage ⅠA pulmonary adenocarcinoma. Logistic multivariate regression analysis showed that significant differences of nodule size, nodule status, RLP, DLP and EGFR mutation existed between the two groups (P<0.05), which were independent risk factors for pleural invasion.ConclusionImageological-pathological-biological characteristics of patients with small nodular type stage ⅠA pulmonary adenocarcinoma are closely related to pleural invasion. The possibility of pleural invasion should be evaluated by combining these parameters in clinical diagnosis and treatment.
ObjectiveTo reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. MethodsPublications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. ResultsA marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. ConclusionOver the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
ObjectiveTo reveal and demonstrate the hotspots and further research directions in screening technology for early lung cancer, and provide references for the future studies. MethodsResearches related to lung cancer screening from 2011 to 2021 in the Web of Science database were included. Biblioshiny, a bibliometrics program based on R language, was used to perform content analysis and visualization of the included literature information. ResultsResearches related to lung cancer screening were increasing year by year. Six major cooperation groups were formed between countries. The current research hotspots in the field of early lung cancer screening technology mainly focused on the multi-directional fusion of radiographic imaging, liquid biopsy and artificial intelligence. ConclusionLow-dose spiral CT screening is still the most important and mainstream method for the screening of early lung cancer at present. The combination and integration of artificial intelligence with various screening methods and the innovation of novel testing and diagnostic equipment are the current research hotspots and the future research trend in this field.
ObjectiveTo explore the efficiency of Ki-67 expression and CT imaging features in predicting the degree of invasion of lung adenocarcinoma. MethodsThe clinical data of 217 patients with pulmonary nodules, who were diagnosed as suspicious lung cancer by multi-disciplinary treatment clinic of pulmonary nodules in our hospital from September 2017 to August 2021, were retrospectively analyzed. There were 84 males and 133 females, aged 52 (25-84) years. The patients were divided into two groups according to the infiltration degree, including an adenocarcinoma in situ and microinvasive adenocarcinoma group (n=145) and an invasive adenocarcinoma group (n=72). ResultsThere was no statistical difference in the age and gender between the two groups (P>0.05). The univariate analysis showed that CK-7, P63, P40 and CK56 expressions were not different between the two groups (P=0.172, 0.468, 0.827, 0.313), while Napsin A, TTF-1 and Ki-67 expressions were statistically different (P=0.002, 0.020, <0.001). The multivariate analysis showed that Ki-67 expression was statistically different between the two groups (P<0.001). Ki-67 was positively correlated with malignant features of CT images and the degree of lung adenocarcinoma invasion (P<0.05). Ki-67 and CT imaging features alone could predict the degree of lung adenocarcinoma invasion, but their sensitivity and specificity were not high. Ki-67 combined with CT imaging features could achieve a higher prediction efficiency.ConclusionCompared with Ki-67 or CT imaging features alone, the combined prediction of Ki-67 and imaging features is more effective, which is of great significance for clinicians to select the appropriate operation occasion.
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.