Prostate cancer ranks second among the causes of death of malignant tumors in middle-aged and elderly men. A considerable number of patients are not easily detected in early-stage prostate cancer. Although traditional imaging examinations are of high value in the diagnosis and staging of prostate cancer, they also have certain limitations. With the development of nuclear medicine instruments and molecular probes, molecular imaging is playing an increasingly important role in the diagnosis and treatment of prostate cancer. Positron emission tomography and computed tomography (PET/CT) using prostate-specific membrane antigen (PSMA) as a probe has gained increasing recognition. This article will review the latest progress in the application of PET/CT using probes for targeting PSMA to imaging and treatment of prostate cancer, in order to provide a theoretical basis for the application of probes for targeting PSMA in the diagnosis and treatment of prostate cancer.
Solitary pulmonary nodule (SPN) is defined as a rounded opacity≤3 cm in diameter surrounded by lung parenchyma. The majority of smokers who undergo thin-section CT have SPNs, most of which are smaller than 7 mm. In the past, multiple follow-up examinations over a two-year period, including CT follow-up at 3, 6, 12, 18, and 24 months, were recommended when such nodules are detected incidentally. This policy increases radiation burden for the affected population. Nodule features such as shape, edge characteristics, cavitation, and location have not yet been found to be accurate for distinguishing benign from malignant nodules. When SPN is considered to be indeterminate in the initial exam, the risk factor of the patients should be evaluated, which includes patients' age and smoking history. The 2005 Fleischner Society guideline stated that at least 99% of all nodules 4 mm or smaller are benign; when nodule is 5-9 mm in diameter, the best strategy is surveillance. The timing of these control examinations varies according to the nodule size (4-6, or 6-8 mm) and the type of patients, specifically at low or high risk of malignancy concerned. Noncalcified nodules larger than 8 mm diameter bear a substantial risk of malignancy, additional options such as contrast material-enhanced CT, positron emission tomography (PET), percutaneous needle biopsy, and thoracoscopic resection or videoassisted thoracoscopic resection should be considered.
Prostate cancer is the most common malignant tumor in male urinary system, and the morbidity and mortality rate are increasing year by year. Traditional imaging examinations have some limitations in the diagnosis of prostate cancer, and the advent of molecular imaging probes and imaging technology have provided new ideas for the integration of diagnosis and treatment of prostate cancer. In recent years, prostate-specific membrane antigen (PSMA) has attracted much attention as a target for imaging and treatment of prostate cancer. PSMA ligand positron emission tomography (PET) has important reference value in the diagnosis, initial staging, detection of biochemical recurrence and metastasis, clinical decision-making guidance and efficacy evaluation of prostate cancer. This article briefly reviews the clinical research and application progress on PSMA ligand PET imaging in prostate cancer in recent years, so as to raise the efficiency of clinical applications.
The PET/CT imaging technology combining positron emission tomography (PET) and computed tomography (CT) is the most advanced imaging examination method currently, and is mainly used for tumor screening, differential diagnosis of benign and malignant tumors, staging and grading. This paper proposes a method for breast cancer lesion segmentation based on PET/CT bimodal images, and designs a dual-path U-Net framework, which mainly includes three modules: encoder module, feature fusion module and decoder module. Among them, the encoder module uses traditional convolution for feature extraction of single mode image; The feature fusion module adopts collaborative learning feature fusion technology and uses Transformer to extract the global features of the fusion image; The decoder module mainly uses multi-layer perceptron to achieve lesion segmentation. This experiment uses actual clinical PET/CT data to evaluate the effectiveness of the algorithm. The experimental results show that the accuracy, recall and accuracy of breast cancer lesion segmentation are 95.67%, 97.58% and 96.16%, respectively, which are better than the baseline algorithm. Therefore, it proves the rationality of the single and bimodal feature extraction method combining convolution and Transformer in the experimental design of this article, and provides reference for feature extraction methods for tasks such as multimodal medical image segmentation or classification.
ObjectiveTo conduct a meta-analysis comparing the accuracy of artificial intelligence (AI)-assisted diagnostic systems based on 18F-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) and structural MRI (sMRI) in the diagnosis of Alzheimer's disease (AD). MethodsOriginal studies dedicated to the development or validation of AI-assisted diagnostic systems based on 18F-FDG PET/CT or sMRI for AD diagnosis were retrieved from the Web of Science, PubMed, and Embase databases. Studies meeting the inclusion criteria were collected, and the risk of bias and clinical applicability of the included studies were assessed using the PROBAST checklist. The pooled sensitivity, specificity, and area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated using a bivariate random-effects model. ResultsTwenty-six studies met the inclusion criteria, yielding a total of 38 2×2 contingency tables related to diagnostic performance. Specifically, 24 contingency tables were based on 18F-FDG PET/CT to distinguish AD patients from normal cognitive (NC) controls, and 14 contingency tables were based on sMRI for the same purpose. The meta-analysis results showed that for 18F-FDG PET/CT, the AI-assisted diagnostic systems had a pooled sensitivity, specificity, and SROC-AUC of 89% (95%CI 88% to 91%), 93% (95%CI 91% to 94%), and 0.96 (95%CI 0.93 to 0.97), respectively. For sMRI, the AI-assisted diagnostic systems had a pooled sensitivity, specificity, and SROC-AUC of 88% (95%CI 85% to 90%), 90% (95%CI 87% to 92%), and 0.94 (95%CI 0.92 to 0.96), respectively. ConclusionAI-assisted diagnostic systems based on either 18F-FDG PET/CT or sMRI demonstrated similar performance in the diagnosis of AD, with both showing high accuracy.
Objective To introduce the current study on 18F-fluorodexyglucose positron emission tomography (18F-FDG PET) scanning in diagnosis and treatment of carcinoma of large intestine. Methods The literatures about 18F-FDG PET scanning in diagnosis and treatment of carcinoma of large intestine in recent years were reviewed. Results 18F-FDG PET scanning is superior to CT and MRI in identificating carcinoma of large intestine recurrence, metastasis in the early stage after operation and staging carcinoma of large intestine. Conclusion 18F-FDG PET scanning may be one of the accessory examinations in carcinoma of large intestine and may be helpful for the choice of treatment.
Objective To investigate the advances and clinical efficacy evaluation method on neoadjuvant chemotherapy in patients with gastric cancer. Methods Literatures on the advances and clinical efficacy evaluation method on neoadjuvant chemotherapy in patients with gastric cancer were reviewed and analyzed. The agreement between computed tomography (CT), endoscopic ultrasound (EUS), magnetic resonance imaging (MRI) and positron emission tomography (PET) and the results of histopathology and survival was analyzed.Results CT and EUS were the method of efficacy evaluation commonly used at present, but the evaluation indexes and criteria were controversial, and the criteria for solid tumors seemed to be not feasible for gastric cancer. Diffusionweighted imaging (DWI) method needed more investigation, while PET held advantage in early selection of patients without response accurately.Conclusion There is no uniform standard for clinical efficacy evaluation yet, so an integration of diverse imaging methods may be the best choice to improve the accuracy of neoadjuvant chemotherapy in patients with gastric cancer.
ObjectiveTo systematically review the diagnostic value of FDG-PET, Aβ-PET and tau-PET for Alzheimer ’s disease (AD).MethodsPubMed, EMbase, The Cochrane Library, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect diagnostic tests of FDG-PET, Aβ-PET and tau-PET for AD from January 2000 to February 2020. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies; then, meta-analysis was performed by Meta-Disc 1.4 and Stata 14.0 software.ResultsA total of 31 studies involving 3 718 subjects were included. The results of meta-analysis showed that, using normal population as control, the sensitivity/specificity of FDG-PET and Aβ-PET in diagnosing AD were 0.853/0.734 and 0.824/0.771, respectively. Only 2 studies were included for tau-PET and meta-analysis was not performed.ConclusionsFDG-PET and Aβ-PET can provide good diagnostic accuracy for AD, and their diagnostic efficacy is similar. Due to limited quality and quantity of the included studies, more high quality studies are required to verify the above conclusions.
ObjectiveTo analyze the influencing factors for image quality of 18F-deoxyglucose (FDG) positron emission tomography (PET)/CT systemic tumor imaging and explore the method of control in order to improve the PET/CT image quality. MethodsRetrospective analysis of image data from March to June 2011 collected from 1 000 18F-FDG whole body tumor imaging patients was carried out. We separated standard films from non-standard films according to PET/CT image quality criteria. Related factors for non-standard films were analyzed to explore the entire process quality control. ResultsThere were 158 cases of standard films (15.80%), and 842 of non-standard films (84.20%). Artifact was a major factor for non-standard films (93.00%, 783/842) followed by patients’ injection information recording error (2.49%, 21/842), the instrument factor (1.90%, 16/842), incomplete scanning (0.95%, 8/842), muscle and soft tissue uptake (0.83%, 7/842), radionuclide contamination (0.59%, 5/842), and drug injection (0.24%, 2/842). The waste film rate was 5.80% (58/1 000), and the redoing rate was 2.20% (22/1 000). ConclusionComplex and diverse factors affect PET/CT image quality throughout the entire process, but most of them can be controlled if doctors, nurses and technicians coordinate and cooperate with each other. The rigorous routine quality control of equipment and maintenance, patients’ full preparation, appropriate position and scan field, proper parameter settings, and post-processing technology are important factors affecting the image quality.
Positron emission tomography (PET) is a highly sensitive and low invasive technology for cancer biological imaging. Integrated PET/computed tomography (PET/CT) cameras combine functional and anatomical information in a synergistic manner that improves diagnostic interpretation. The role of 18F FDG PET/CT in differentiated thyroid cancer (DTC) is well established, particularly in patients presenting with elevated thyroglobulin (Tg) levels and negative radioactive iodine scan. This review presents the evidence supporting the use of 18F FDG PET/CT throughout the diagnosis and management of thyroid cancer, and provides suggestions for its clinical uses.