• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Osteogenic" 39 results
        • STUDY ON CULTURE AND OSTEOGENIC POTENTIAL OF STROMAL CELL OF BONE MARROW IN VITRO

          The osteogenc potential of bone marrow has been proved by experiment. To investigate more in details, bone marrow was obtained from the trochanteric region of femur of NewZealand rabbit in 4 to 8 weeks old. After being cultured in vitro for one week, the hematopoietic component of the bone marrow had disappeared, thus the stromal cells were obtained. Then the stromal cells were subcultured in cultural fluid containing dexamethasone (10-8 mol/L) and natrium glycerophosphate (10mmol/L). Under the phasecontrast microscope, it was found that being cultured for 15 days. The stromal cells were lined up in one layer and late the secretion activity was increased and gradually transformed into multilayer structure and was congregated into diffused opaque clusters in twenty days. During culture, the cells were examined by tetracycline fluorescence label, histochemistry stains, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray microanalysis. The results showed that the morphological and biological characteristics of the cultured stromal cells derived from the bone marrow were similiar to those of osteoblasts and could synthesized mineralized new bone tissue in vitro.

          Release date:2016-09-01 11:08 Export PDF Favorites Scan
        • EFFECT OF VARIOUS CONCENTRATIONS OF PLATELET-RICH PLASMA ON OSTEOGENIC DIFFERENTIATION OF SKELETAL MUSCLE-DERIVED STEM CELLS

          Objective To investigate the effect of various concentration of platelet-rich plasma (PRP) on osteogenic differentiation of rabbit skeletal muscle-derived stem cells (SMSCs) cultured in vitro. Methods Blood drawn from the central ear arteries of 9 one-year-old New Zealand white rabbits weighing 2.5-3.0 kg (male and female) was used to prepare PRP (Landesberg method). Full blood count and platelet count in PRP were tested. Soleus muscle of right hindl imb in rabbit was obtained and used to culture SMSCs in vitro. The cells at passage 3 were randomly divided into different groups: the experimental groups in which the cells were treated by conditioned culture media with various concentrations of autologousPRP (6.25%, 12.50%, 25.00%, 50.00%), and the control group in which the cells were treated with the media without PRP. At different time points after intervention, osteogenetic activity of the cells was detected by ALP staining observation, ALP activity detection was conducted, al izarin red staining for calcium nodules and immunofluorescence staining for osteocalcin were performed, and core binding factor α1 (Cbfα1) of osteogenic gene expression was tested by RT-PCR. Results The full blood PRP count and the platelet count in PRP was (3.06 ± 0.46) × 105/μL and (18.08 ± 2.10) × 105/μL, respectively. ALP staining: the cells in all the experimental groups were positive for the staining with many black sediment particles in cytoplasm; the cells in the control group were negative staining. ALP activity: all the experimental groups were higher than the control group (P lt; 0.05), the experimental group at 12.50% was superior to other experimental groups at each time point (P lt; 0.05). Al izarin red staining: at 14 days after culture, orange-red calcium nodules were evident in all the experimental groups; no orange-red calcium nodules were observed in the control group with a mineral ization rate of zero; there were significant difference between the experimental groups and the control group in terms of mineral ization rate (P lt; 0.05), the experimental group at 12.50% had a higher mineral ization rate than other experimental groups (P lt; 0.05). Immunofluorescence staining for osteocalcin: at 7 days after culture, the experimental groups were positive for the staining with yellow fluorescence in cytoplasm, and the result of the control group was negative. RT-PCR detection: no obvious changes of the gene expression were noted at 4, 12, and 24 hoursafter culture in the control group; the gene expression in all the experimental groups was significant superior to that of control group, especially at 12 hours, and the expression in the experimental group at 12.50% was the highest. Conclusion PRP can obviously promote the osteogenic differentiation of SMSCs cultured in vitro in a concentration-dependent manner, and the 12.50% is proved to be the ideal concentration.

          Release date:2016-09-01 09:07 Export PDF Favorites Scan
        • IMMUNOGENICITY OF HUMAN UMBILICAL CORD BLOOD DERIVED MESENCHYMAL STEM CELLS AFTER OSTEOGENIC INDUCTION

          ObjectiveTo study the immunological properties of osteogenically differentiated umbilical cord blood derived mesenchymal stem cells (UCB-MSCs). MethodsUCB-MSCs were isolated from the umbilical cord vein, and were expanded; the cells at passage 3 were osteogenically induced for 2 weeks in vitro. The expressions of human leukocyte antigen I (HLA-I) and HLA-Ⅱ molecules were observed by flow cytometry analysis before and after osteogenic induction. Peripheral blood T lymphocytes were isolated and cultured with osteoblastic induced or non-osteoblastic induced UCB-MSCs in different cell concentrations of 1×102, 1×103, 1×104, and 1×105 cells/well. The intake value of 3H-thymidine was calculated with luminescence counter. Then T lymphocytes were pretreated with PHA, and co-cultured with osteoblastic induced and non-osteoblastic induced UCB-MSCs as described above. IL-2 was further added to test the reversed effect of T lymphocytes proliferation stimulated by UCB-MSCs. Finally, to investigate whether the immunomodulatory effects on T lymphocytes proliferation depend on direct or indirect cell contact, the Transwell chamber culture system of UCB-MSCs and T lymphocytes was established. ResultsFlow cytometry analysis showed that non-osteoblastic induced UCB-MSCs expressed HLA-I but did not express HLA-Ⅱ; the expression of HLA-Ⅱ increased in osteoblastic induced UCB-MSCs. No T lymphocyte response was stimulated by non-osteoblastic induced UCB-MSCs, but osteoblastic induced UCB-MSCs could stimulate the proliferation of allogeneic T lymphocytes, especially after IFN-γ treatment. Non-osteoblastic induced UCB-MSCs of 1×104 and 1×105 cells/well could suppress the proliferation of T lymphocytes evoked by PHA, and this suppression could be reversed by the addition of IL-2. While osteoblastic induced UCB-MSCs did not have such suppressive effect. The results of the Transwell culture system also showed that non-osteoblastic induced UCB-MSCs could obviously inhibit the proliferation of T lymphocytes, but the osteoblastic induced UCB-MSCs could not. ConclusionThe immunological properties of UCB-MSCs will change accordingly after osteogenic induction, so UCB-MSCs might not be suitable for the seed cells of bone tissue engineering.

          Release date: Export PDF Favorites Scan
        • EFFECT OF CRYOPRESERVATION ON GROWTH AND OSTEOGENESIS OF HUMAN ADIPOSE-DERIVED STEM CELLS

          Objective As one of the adult stem cells, adi pose-derived stem cells (ADSCs) have become an important seed cell source for tissue engineering recently. But whether the thawed cryopreserved ADSCs could be used to tissue engineered bone remains unknown. To investigate the effect of cryopreservation on the growth and osteogenesis of ADSCs invitro. Methods The ADSCs were isolated from the adipose aspirates by collagenase digestion method. For the experimental group, the 2nd generation cells were stored with a simple method of cryopreservation by slow cool ing with dimethyl sulphoxide as a cryoprotectant and rapid thawing. After cryopreserved in l iquid nitrogen for 4 weeks, ADSCs were recovered and cultured in osteogenic media, with non-cryopreserved ADSCs as the control group. The osteogenic differentiation was evaluated by alkal ine phosphatase (ALP) staining and Al izarin red O staining at 2 and 3 weeks respectively. The cell growth and osteogenesis of ADSCs were further determined using DNA assay and the ALP activity and calcium content were measured. Results The survival percentage of the cryopreserved cells was 90.44% ± 2.62%. The cell numbers and ALP activity increased with osteogenic induction time, and reach plateaus at 7 days and 11 days, respectively. The ALP staining and Al izarin red O staining results were both positive at 2 weeks and 3 weeks after osteogenic induction, respectively. And no significant difference in the cells number, ALP activity, and calcium content were found between experimental group and control group (P gt; 0.05). Conclusion Cryopreservation does not affect the growth and osteogenesis of ADSCs, and the cryopreserved ADSCs can be used as cell source for tissue engineered bone.

          Release date:2016-09-01 09:03 Export PDF Favorites Scan
        • REGUL ATORY EFFECT OF SIMVASTATIN ON MIDDLE/L ATE STAGES OSTEOGENIC DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS VIA p38MAPK PATHWAY

          ObjectiveTo investigate the regulatory effect of simvastatin on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) at middle/late stages by p38MAPK pathway under condition of osteoinductive environment. MethodsThe bone marrow of bilateral femur and tibia were harvested from 20 4-week-old female Sprague Dawley rats. BMSCs were isolated and cultured with whole bone marrow culture method; the second generation of cells were randomly divided into 5 groups: control group (complete medium, CM), simvastatin group (simvastatin medium, SIM), osteogenic induction group (osteogenic induction medium, OM), simvastatin and osteogenic induction group (simvastatin+osteogenic induction medium, OM+SIM), and blocker group (SB203580+simvastatin+osteogenic induction medium, OM+SIM+SB). MTT assay was used to detect the cell activity in CM group and SIM group at 2, 3, 4, 5, and 6 days, ELISA method to measure the content of alkaline phosphatase (ALP) in OM group and OM+SIM group at 7 and 14 days. The mRNA and protein expressions of osteocalcin (OCN) were detected by real-time quatitative PCR and Western blot after 1, 12, and 24 hours of osteogenic induction at 21 and 28 days. The protein expressions of phospho-p38 (p-p38) and p38 in OM group, OM+SIM group, and OM+SIM+SB group were detected by Western blot at the best induction time of simvastatin. ResultsMTT assay showed that no significant difference was found in absorbance (A) value between CM group and SIM group at each time point (P > 0.05), indicating no effect of 1×10-7 mol/L simvastatin on cell viability. ELISA results showed that ALP content significantly increased in OM+SIM group when compared with OM group at 7 and 14 days; the ALP content was significantly higher at 7 days than 14 days in OM group and OM+SIM group (P < 0.05). OCN mRNA and protein expressions at 12 hours were significantly higher than those at other time points in each group (P < 0.05), and the expressions of OM+SIM group was significantly higher than those of OM group (P < 0.05). The best induction time of simvastatin was 12 hours. At 12 hours after blocking intervention, the p-p38/p38 in OM+SIM+SB group was significantly lower than that in OM group and OM+SIM group (P < 0.05), and the p-p38/p38 in OM+SIM group was significantly higher than that in OM group (P < 0.05). ConclusionSimvastatin can increase the mRNA and protein expression levels of OCN and the protein of p-p38 in osteogenic differentiation of BMSCs at middle/ late stages, and its best induction time is 12 hours.

          Release date: Export PDF Favorites Scan
        • IN VITRO STUDY ON MULTIPLE DIFFERENTIATION POTENTIAL OF SWINE SYNOVIUM-DERIVED MSCs

          To study the method of isolating and culturing synovium-derived MSCs (SMSCs), and to investigate its multiple differentiation potential in vitro. Methods Three 2-month-old Changfeng hybrid swines weighing 8-10 kg (male and female) were used. SMSCs were harvested from the synovium of swine knee joints and cultured in vitro. When the SMSCs at passage 3 reached confluence, basic culture medium was removed, and the multi ple differentiationpotential of SMSCs was demonstrated in specific induction media (experimental group). The cells at passage 3 cultured with basic culture medium served as control group. After 21 days of chondrogenic differentiation, the cells underwent toluidine blue staining, immunohistochemistry staining and real-time fluorescence quantitative PCR detection. After 10 and 21 days of osteogenic differentiation, the cells underwent ALP staining and Al izarin red staining, respectively. After 21 days of adipogenic differentiation, the cells underwent Oil red O staining. Results SMSCs displayed long and thin or polygonal morphology 24 hours after culture. They prol iferated fast 48 hours after culture and presented large number of spindle-shaped cells with few globular cells 72 hours after culture. For the experimental group 21 days after chondrogenic induction, the cells were positive for toluidine blue staining with the formation of Aggrecan outside the cells; the immunohistochemistry staining revealed the expression of Col II; the real-time fluorescence quantitative PCR detection showed that the expressions of Col II A1, Aggrecan and SOX9 mRNA of the experimental group were greater than that of control group (P lt; 0.05). The cells were positive for ALP staining 10 days after osteogenic induction, and positive for Al izarin red staining 21 days after osteogenic induction, with the formation of calcium nodules. Oil red O staining displayed the formation of l i pid droplets inside the cells 21 days after adi pogenic induction. For the control group, the results of all the staining assays were negative except the ALP staining presenting with sl ight positive result. Conclusion SMSCs can be isolated from knee joint of swine and proliferate and differentiate into osteogenic, adi pogenic and chondrogenic cells in vitro. SMSCs may be a promising source of seed cells for tissue engineering.

          Release date:2016-09-01 09:07 Export PDF Favorites Scan
        • miR-93-5P SUPPRESSES OSTEOGENIC DIFFERENTIATION OF MOUSE C3H10T1/2 CELLS BY TARGETING Smad5

          ObjectiveTo investigate whether miR-93-5p suppresses osteogenic differentiation of mouse mesenchymal stem cells (C3H10T1/2) by targeting Smad5, a predicted target in silicon. MethodsSmad5 3'-UTRluciferase vector (pmiR-RB-REPORTTM) was constructed and dual-luciferase reporter gene assay was employed to examine the effect of miR-93-5p on Smad5 3'-UTR-luciferase activity to identify whether Smad5 was the target gene of miR-93-5p. miR-93-5p mimics (group M), miR-93-5p inhibitor (group In), miR-93-5p mimics negative control (group MC), and miR-93-5p inhibitor negative control (group InC) were transfected into the C3H10T1/2 cells, respectively, and followed by induction of osteogenic differentiation. After 48 hours, the real-time fluorescent quantitative PCR (qRTPCR) and Western blot assays were performed to detect the relative expressions of Smad5 mRNA and protein. At 14 days, to realize the regulation role of miR-93-5p in osteogenic differentiation, the extracellular calcium deposition during the osteogenesis of C3H10T1/2 cells was tested by Alizarin red staining. ResultsDual-luciferase reporter gene assay showed that miR-93-5p could combine with Smad5 mRNA 3'-UTR specificity, and inhibited its luciferase activity (P<0.05). After 48 hours, no significant difference was shown in the relative expression of Smad5 mRNA between group M and group MC as well as between group In and group InC by qRT-PCR assay (P>0.05); however, the results of Western blot assay showed that the relative expression of Smad5 protein was significantly decreased in group M and increased in group In when compared with groups MC and InC (P<0.05). At 14 days after osteogenic induction, Alizarin red staining showed that the extracellular calcium deposition of group M was obviously less than that of group MC, and it was obviously more in group In than in group InC. ConclusionSmad5 may be the target gene of miR-93-5p. And miR-93-5p can suppress osteogenic differentiation of C3H10T1/2 cells by directly targeting Smad5.

          Release date: Export PDF Favorites Scan
        • REGULATIONS OF Hedgehog SIGNALING PATHWAY ON MESENCHYMAL STEM CELLS

          Objective To summarize the regulations of Hedgehog signal ing pathway on the prol iferation and multidifferentiation of mesenchymal stem cells (MSCs). Methods The related l iterature in recent years concerning the regulations of Hedgehog signal ing pathway on the biological characteristics of MSCs was reviewed and analyzed. Results Hedgehog signal ing pathway promoted the prol iferation of MSCs, and played a major role in the induction of osteogenic and chondrogenic differentiations, but it inhibited the adi pocytic differentiation. Conclusion The regulations of Hedgehog signal ing pathway in MSCs multidifferentiation and prol iferation could be used as the new therapeutic targets of tissue ischemia, osteoporosis, achondroplasia, obesity, and so on.

          Release date:2016-08-31 05:48 Export PDF Favorites Scan
        • OSTEOGENIC ACTIVITY OF POROUS CALCIUM PHOSPHATE CERAMICS FABRICATED BY RAPID PROTOTYPING

          Objective Calcium phosphate bioceramics has a broad appl ication prospect because of good biocompatibil ity, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. Methods The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs)were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell prol iferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkal ine phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and prol iferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). Results DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and prol iferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were ber than that in group B. There was no significant difference in the change of the ALP activity among 4 groups at the first 3 days (P gt; 0.05); the ALP activity increased obviously in 4 groups at 7 days, group A was significantly higher than other groups (P lt; 0.05) and groups C, D were significantly higher than group D (P lt; 0.05). Conclusion The porous calcium phosphate ceramics has good cytocompatibil ity and the designed pores are favorable for cell ingrowth. The porous ceramicsfabricated by rapid prototyping has prominent osteogenic differentiation activity and can be used as a choice of scaffolds for bone tissue engineering.

          Release date:2016-08-31 05:48 Export PDF Favorites Scan
        • EXPERIMENTAL STUDY OF OSTEOGENIC INDUCTION OF FETAL MOUSE LIVER MESENCHYMAL STEMCELLS IN VITRO AND THEIR BIOLOGIC ATTACHMENT PROPERTIES TO TRUE BONE CERAMIC

          Objective To study the culture and purification of the fetal mouse liver mesenchymal stem cells(MSCs) in vitro and to investigate their differentiation potential and the composite ability with true bone ceramic(TBC). Methods The single cell suspension of MSCs was primarily cultured and passaged, which was prepared from the fetal mouse liver; the flow cytometry was applied to detectCD29, CD34, CD44 and CD45. The osteogenic differentiation was induced in chemical inducing system; the osteogenic induction potency was tested. The purified fetal mouse liver MSCs were compounded with TBC covered with collagen type Ⅰ in vitro and the cell attachment and proliferation to the TBC were observed. Results The primary MSCs of fetal mouse liver were easy to culture in vitro. They proliferated well and were easy to subcultured. The proliferation ability of primary and passaged MSCs was similar. Flow cytometric analysis showed the positive results for CD29, CD44 and the negative results for CD34, CD45. After 7 days of induction, the MSCs expressed collagen type I and alkaline phosphatase(ALP) highly. After 14 days of induction, the fixed quantity of ALP increased significantly. After 28 days of induction, calcium accumulation was observed by Von Kossa’s staining. Many liver MSCs attached to the surface of TBC. Conclusion The MSCs of the fetalmouse liver can be obtained, subcultured and purified easily. After culturing in chemical inducing system, the MSCs of fetal mouse liver can be successfully induced to osteoblast-like cells, attach to the surface of TBC and proliferate well. 

          Release date:2016-09-01 09:30 Export PDF Favorites Scan
        4 pages Previous 1 2 3 4 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜