• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Nucleus pulposus cell" 20 results
        • AN IN VITRO STUDY ON HUMAN BONE MARROW MESENCHYMAL STEM CELLS PROTECTING NUCLEUSPULPOSUS CELLS FROM OXIDATIVE STRESS-INDUCED APOPTOSIS IN A CO-CULTURE SYSTEM OF NODIRECT CELLULAR INTERACTION

          Objective Bone marrow mesenchymal stem cells (BMSCs) transplantation can potentially regenerate the degenerated intervertebral disc, with the underlying regenerating mechanism remaining largely unknown. To investigate the potential of human BMSCs protecting nucleus pulposus cells (NPCs) from oxidative stress-induced apoptosis in a coculturesystem, and to illustrate the possible mechanisms of BMSCs transplantation for intervertebral disc regeneration. Methods BMSCs collected by density gradient centrifugation in Percoll solution were cultured and sub-cultured till passage 3, and the surface molecules of CD34, CD45, and CD13 were identified. NPCs were isolated by collagenase digestion and the chondrocyte l ike phenotype was confirmed by morphologic observation after HE staining, inverted phase contrast microscope, proteoglycan, and collagen type II expression after toluidine blue and immunocytochemistry staining. The 3rd passage BMSCs and the 1st passage NPCs were divided into four groups: group A, NPCs (1 × 106 cells) were cultured alone without apoptosis inducing (negative control); group B, NPCs (1 × 106 cells) were co-cultured with BMSCs (1 × 106 cells) with apoptosis inducing; group C, NPCs (1 × 106 cells) were co-cultured with BMSCs (3 × 105 cells) with apoptosis inducing; group D, NPCs (1 × 106 cells) were cultured alone with apoptosis inducing (positive control). After 3 or 7 days of culture or co-culture, the NPCs in groups B, C, and D were exposed to 0.1 mmol hydrogen peroxide for 20 minutes to induce apoptosis. With DAPI staining cellular nucleus, Annexin-V/propidium iodide staining cellular membrane for flow cytometry analysis, the apoptosis of NPCs in each group was studied both qual itatively and quantitatively. Besides, the changes in Bax/Bcl-2 gene transcription and Caspase-3 protein content, were analyzed with semi-quantitative RT-PCR and Western blot. Results BMSCs were successfully isolated and CD34-, CD45-, and CD13+ were demonstrated; after isolated from degenerated intervertebral discs and sub-cultured, the spindle-shaped 1st passage NPCs maintained chondrocyte phenotype with the constructive expressions of proteoglycan and collagen type II in cytoplasm. DAPI staining showed the nucleus shrinkage of apoptosis NPCs. Co-cultured with BMSCs for 3 days and 7 days, the apoptosis rates of NPCs in groups B (29.26% ± 8.90% and 18.03% ± 2.25%) and C (37.10% ± 3.28% and 13.93% ± 1.25%) were lower than that in group D (54.90% ± 5.97% and 26.97% ± 3.10%), but higher than that of groupA (15.67% ± 1.74% and 8.87% ± 0.15%); all showing significant differences (P lt; 0.05). Besides, semi-quantitative RT-PCR showed Bcl-2 gene transcription up-regulated (P lt; 0.05) and no significant change of Bax (P gt; 0.05); Western blot result showed that the Caspase-3 protein expression of groups B and C was lower than that of group D, and was higher than that of group A; all showing significant differences (P lt; 0.05). Conclusion In a co-culture system without direct cellular interactions, the oxidative stress-induced apoptosis of human NPCs was amel iorated by BMSCs. The enhanced anti-apoptosis abil ity of NPCs preconditioned by co-culturing with BMSCs might come from the decreased Bax/Bcl-2 gene transcription ratio.

          Release date:2016-08-31 05:47 Export PDF Favorites Scan
        • Comparative study on biological characteristics between different generations of rabbit nucleus pulposus cells

          ObjectiveTo research the biological characteristics of different generations of rabbit nucleus pulposus cells (NPCs) that were cultured with natural culture and subculture method.MethodsThe thoracolumbar segments of New Zealand white rabbits (6-8 weeks old and weighing 1.5-2.5 kg) were obtained and nucleus pulposus were isolated from disc regions. And NPCs were harvested by enzymatic digestion from nucleus pulposus. Primary NPCs were counted as P0 generation. Then, NPCs were passaged by trypsin and counted as P1, P2, P3 with a totle of 4 generations. P0 to P3 generations NPCs were separately examined by observation of cell morphology and proliferation time, detection of apoptosis rates of cells by flow cytometry, and detection of hypoxia-inducible factor 1α (HIF-1α), matrix metalloproteinases 2 (MMP-2), Aggrecan, and collagen type Ⅱ proteins by immunofluorescence and Western blot.ResultsThe morphology of NPCs transformed from triangular or polygonal in P0 generation to spindle in P3 generation; the characteristic vacuolated cells gradually disappeared; and the cell volume and cell proliferation time increased. The cell apoptosis rates were 5.47%±0.91%, 13.77%±2.42%, 33.46%±1.82%, and 38.76%±1.50% from P0 to P3 generations, with the increase of culture time, and there were significant differences between 4 generations (P<0.05). Immunofluorescence staining showed that with the increase of cells generation, the fluorescence intensity of HIF-1α, collagen type Ⅱ, and Aggrecan decreased, and the fluorescence intensity of MMP-2 increased. Western blot results showed that the relative expression of HIF-1α protein was high in P0 generation, the P1 generation has a rising trend, and then gradually decreased; the differences between generations were significant (P<0.05). The relative expression of collagen type Ⅱ protein decreased from P0 to P3 generations and there were significant differences between generations (P<0.05). The relative expression of Aggrecan protein decreased from P0 to P2 generations and there were significant differences between generations (P<0.05); but no significant difference was found between P2 and P3 generations (P>0.05). The relative expression of MMP-2 protein increased significantly in P3 generation; except that the difference between P0 and P2 generations was not significant (P>0.05), the significant differences were found between the other generations (P<0.05).ConclusionRabbit NPCs degeneration model was successfully established by the natural culture and subculture method. Transforming of NPCs morphology, increasing of cell apoptosis rates, decreasing of anabolism, and increasing of catabolism were presented in NPCs degeneration model.

          Release date:2018-05-30 04:28 Export PDF Favorites Scan
        • COMPARISON STUDY ON INJECTABLE TISSUE ENGINEERED NUCLEUS PULPOSUS CONSTRUCTED BY DIFFERENT CELLS AND CHITOSAN HYDROGEL

          Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs. 

          Release date:2016-08-31 05:48 Export PDF Favorites Scan
        • EFFECT OF SILENCING p53 AND p21 ON DELAYING SENESCENCE OF NUCLEUS PULPOSUS CELLS

          Objective The senescence and death of nucleus pulposus (NP) cells are the pathologic basis of intervertebral disc degeneration (IVD). To investigate the molecular phenotypes and senescent mechanism of NP cells, and to identify the method of alleviating senescence of NP cells. Methods The primary NP cells were harvested from male SpragueDawley rats (8-10 weeks old); the hypoxia inducible factor 1α (HIF-1α), HIF-1β, matrix metalloproteinase 2 (MMP-2), andcollagen type II as phenotypic markers were identified through immunocytochemical staining. RT-PCR and Western blot were used to test the silencing effect of NP cells after the NP cells were transfected with p53 and p21 small interference RNA (siRNA). Senescence associated-β-galactosidase (SA-β-gal) staining was used to test the senescence of NP cells, flow cytometry to test the change of cell cycle, the growth curve analysis to test the NP cells prol iferation. Results Immunocytochemical staining showed that NP cells expressed HIF-1α, HIF-1β, MMP-2, and collagen type II. RT-PCR and Western blot showed that the relative expressions of mRNA and protein of p53 and p21 were significantly inhibited in NP cells at passage 35 after transfected with p53 and p21 siRNA. The percentage of SA-β-gal-positive NP cells at passage 35 was significantly higher than that at passage 1 (P lt; 0.001). And the percentage of SA-β-gal-positive NP cells in the p53 siRNA transfection group and p21 siRNA transfection group were significantly lower than that in control group (Plt; 0.001). The flow cytometry showed that the G1 phase of NP cells in p53 siRNA transfection group and p21 siRNA transfection group was significantly shorter than that in control group (P lt; 0.05), but the S phase of NP cells in p53 siRNA transfection group and p21 siRNA transfection group were significantly longer than that in control group (P lt; 0.05). In addition, the growth curve showed that the growth rate of NP cells could be promoted after transfection of p53 and p21 siRNA. Conclusion The senescence of NP cells can be alleviated by silencing of p53 and p21. The effect of alleviating senescence can even ameliorate the progress of IVD and may be a useful and potential therapy for IVD.

          Release date:2016-08-31 04:23 Export PDF Favorites Scan
        • INCREASED SYNTHESIS OF EXTRACELLULAR MATRIX IN PASSAGED NUCLEUS PULPOSUS CELLS BY TRANSFECTION WITH ADENOVIRAL VECTORS CONTAINING HUMAN TRANSFORMING GROWTH FACTOR β1 GENE

          Objective To determine whether the transforminggrowth factor β1 (TGF-β1) is a key regulatory molecule required for an increase or a balance of extracellular matrix (ECM) and DNA synthesis in the goat passaged nucleus pulposus (NP) cells. Methods The NP cells isolated from the goat intervertebral discs were cultured in vitro for a serial of passages and transfected with the replicationincompetent adenoviral vectors carrying the human TGF-β1 (hTGF-β1) or lacZ genes. Then, they were cultured in monolayer or alginate bead 3dimensional (3-D) systems for 10 days.The changes in the production and the molecular components of ECM that occurredin the NP cells transfected with Ad/hTGF-β1 or the controls were evaluated by Westernblot and absorbance of glycosaminoglycan (GAG)-Alcian Blue complexes. Differences of DNA synthesis in the variant cells and culture systems were assessed by fluorometric analysis of the DNA content. ResultsA quantitation in the variant culture systems indicated that in monolayers the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher cell viability and more DNA synthesis(P<0.05); however, in the alginate 3-D culture system, the NP cells transfected with Ad/hTGF-β1 did not have any significant difference from the controls(P>0.05). The Western blotting analysis ofthe protein sample isolated from the variant cells for TGF-β1, type Ⅱ collagen, and Aggrecan expression indicated that in the monolayers and alginate 3-D culture systems the NP cells at Passage 3 transfected with Ad/hTGF-β1 revealed much higher protein levels than the controls(P<0.05); whereas the type Ⅰcollagen content was much lower than the controls (P<0.05), but a significatly increased ratio of type Ⅱ/type Ⅰ collagen was found in both of the cell culture systems(P<0.05). The GAG quantification also showed a positive result in both the cell culture systems and the NP cells at Passage 3 transfected with Ad/hTGF-β1 had a much higher GAG content than the controls(P<0.05). Conclusion To a greaterextent, hTGF-β1 can play a key role in maintaining the phenotype of the NP cells and can still have an effect of the phenotypic modulation after a serial of the cell passages. The NP cells that are genetically manipulated to express hTGF-β1 have a promising effect on the restoration of the intervertebral disc defects. The NP cells transfected with Ad/hTGF-β1 cultured in the 3-D alginate bead systems can show a nearly native phenotype.

          Release date:2016-09-01 09:22 Export PDF Favorites Scan
        • DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS INTO NUCLEUS PULPOSUS-LIKE CELLS TRANSFECTED BY SOX9 EUKARYOTIC EXPRESSION VECTOR IN VITRO

          Objective The biological treatment of intervertebral disc degeneration becomes a research hotspot in recentyears. It is necessary to find an effective approach to induce bone marrow mesenchymal stem cells (BMSCs) differentiate to disc cells which could make appl ication of cell transplantation as a treatment of intervertebral disc degeneration. To investigate the effects of the recombinant plasmid pcDNA3.1IE-SOX9Flag on differentiation of rabbit BMSCs into nucleus pulposus-l ike cells. Methods The eukaryotic expression vector of pcDNA3.1IE-SOX9Flag was constructed. Rabbit BMSCs were isolated and cultured from one-month-old New Zealand white rabbits and were induced into osteogenetic cells in the osteogenesis supplement medium; and the cell surface markers were detected by flow cytometry. The cells at the 3rd passage were randomly divided into 3 groups: in transfected group, the cells were transfected with recombinant plasmid pcDNA3.1IE-SOX9Flag; in negative control group, the cells were transfected with plasmid pcDNA3.1; and in blank control group, the cells were treated with the media without recombinant plasmid. After selected by G418 for 7 days, the cells were harvested and RT-PCR was employed to assay SOX9 mRNA and collagen type II gene (Col2al) mRNA expressions in BMSCs. The expression of SOX9 protein was assayed by Western blot and collagen type II expression was also observed by immunohistochemical staining. Results The SOX9 eukaryotic expression vector was constructed successfully. The BMSCs after 5 days of osteogenetic induction were positive for the alkal ine phosphatase staining. What was more, CD44 expression was positive but CD34 and CD45 expressions were negative. The transfection efficiency was 34.32% ± 1.75% at 72 hours after transfection. After 2 weeks of transfection, BMSCs turned to polygonal and ell iptical. And the cell prol iferation was gradually slow which was similar to the growth characteristic of nucleus pulposus cells. RT-PCR identification showed that SOX9 mRNA and Col2al mRNA expressions were positive in transfected group, and were negative in 2 control groups. Western blot detection showed that SOX9 protein expressed in transfected group but did not express in the control groups. At 2 weeks after transfection, the result of the immunohistochemicalstaining for collagen type II was positive in transfected group. Conclusion The recombinant plasmid pcDNA3.1IE-SOX9Flag can be successfully transfected into rabbit BMSCs, the transfected BMSCs can differentiate into nucleus pulposus-l ike cells, which lays a theoretical foundation for treatment of intervertebral disc degeneration with BMSCs transplantation.

          Release date:2016-08-31 05:48 Export PDF Favorites Scan
        • ADVANCES OF CELL TRANSPLANTATION FOR TREATING INTERVERTEBRAL DISC DEGENERATION

          Objective To introduce the research of cell transplantation for treating intervertebral disc degeneration. Methods The original articles in recent years about cell transplantation for treating intervertebral disc degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. Results Transplantation of intevertebraldisc-derived cells or BMSCs by pure cell transplantation or combined with collagen scaffold into intervertebral disc couldexpress nucleus pulposus-l ike phenotype. All the cells transplanted into intervertebral disc could increase extracellular matrix synthesis and rel ieve or even inhibit further intervertebral disc degeneration. Conclusion Cell transplantation for treating intervertebral disc degeneration may be a promising approach.

          Release date:2016-09-01 09:18 Export PDF Favorites Scan
        • RESTORING PHENOTYPE OF DEDIFFERENTIATED NORMAL NUCLEUS PULPOSUS CELLS BY RESVERATROL

          Objective To investigate the effects of in-vitro monolayer culture and three-dimensional (3-D) alginate microsphere culture on the differentiation of normal human nucleus pulposus cells (NPCs), and to discuss the regulatory mechanism of restoring the phenotype of dedifferentiated NPCs by culturing resveratrol (RES) in 3-D alginate microsphere. Methods Normal human nucleus pulposus tissues were harvested for culture and identification of NPCs from 6 patients with burst lumbar vertebra fracture. NPCs at passages 1, 3, 5, and 7 in the in-vitro monolayer culture were harvested to observe the morphology, cell aging, and proteoglycan expression. The cell proliferation rates of NPCs at passage 1 in-vitro in monolayer culture and in 3-D alginate microsphere culture were detected. NPCs at passage 7 were randomly divided into 3-D alginate microsphere control group (group A), RES group (group B), silent mating type information regulation 2 homolog 1 (SIRT1)- small interfering RNA (siRNA) + RES group (group C), and negative control-siRNA + RES group (group D); and NPCs in the in-vitro monolayer culture was monolayer control group (group E). After corresponding treatment, Western blot was used for determining the protein expressions of SIRT1, Aggrecan, and collagen type II; real-time fluorescence quantitative PCR was used for detecting SIRT1 mRNA expression. Results The cultured cells were identified to be NPCs. Morphological observation, senescence-associated β-galactosidase (SA-β-gal) staining, and toluidine blue staining showed that dedifferentiation of normal NPCs tended to occur under continuous in-vitro monolayer culture, which was more obvious with increase of passage number. NPCs in 3-D alginate microsphere culture showed significantly lower proliferation rate than NPCs in the in-vitro monolayer culture (P lt; 0.05), but it could significantly improve the protein expressions of collagen type II and Aggrecan in dedifferentiated NPCs, showing significantly difference between groups E and A (P lt; 0.05). The protein expressions of SIRT1, collagen type II, and Aggrecan in group B were significantly improved when compared with that in group A (P lt; 0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expressions of SIRT1 mRNA and proteins in group C were significantly inhibited after transfected with SIRT1-siRNA when compared with those in groups B and D (P lt; 0.05), and the protein expressions of collagen type II and Aggrecan in group C were significantly lower than those in groups B and D (P lt; 0.05). Conclusion Continuous in-vitro monolayer culture could efficiently cultivate numerous seeding NPCs, but it is liable to dedifferentiate. In 3-D alginate microsphere culture, RES could restore the phenotype of dedifferentiated NPCs and synthesize more extracellular matrix, which is related to the regulation of SIRT1.

          Release date:2016-08-31 04:07 Export PDF Favorites Scan
        • AN IN VITRO STUDY ON BIOLOGICAL CHARACTERISTICS OF BONE MARROW MESENCHYMAL STEM CELLS IN MICROENVIRONMENT OF PREMATURE SENESCENCE OF NUCLEUS PULPOSUS CELLS

          ObjectiveTo investigate the biological characteristics of bone marrow mesenchymal stem cells (BMSCs) in microenvironment of premature senescence of nucleus pulposus cells (NPCs) so as to lay a foundation for the repair of intervertebral disc degeneration by BMSCs transplantation. MethodsHuman degenerative nucleus pulposus and normal bone marrow were collected, and then NPCs and BMSCs were isolated, cultured, and identified. The 3rd passage BMSCs and the 1st passage NPCs with premature senescence were co-cultured without contact in the Transwell culture system. NPCs to BMSCs ratio was 75%:25% (group A), 50%:50% (group B), and 0:100% (group C). The morphological changes of BMSCs were observed by inverted phase contrast microscopy and transmission electron microscopy. At 3 and 6 days after co-culture, cell counting kit 8 was used to detect cell viability, flow cytometry was used to observe the cell cycle and detect DNA metabolism after BrdU labeling. Cell senescence was also evaluated by detecting senescence associated β-galactosidase (SA-β-gal) activity. ResultsThe typical morphology of cell senescence was seen in groups A and B, especially in group A. At 3 and 6 days after co-culture, the cell survival rate of group A was significantly lower than that of group B (P<0.05). At 3 days after co-culture, the proportion of cells in G1 phase in group A was significantly higher than that in groups B and C (P<0.05), the proportion of cells in S phase in group A was significantly lower than that in groups B and C (P<0.05). At 6 days, the proportion of cells in G1 phase in group A was about 81.0%, and the proportion of cells in S phase and G2 phase decreased, showing significant difference when compared with groups B and C (P<0.05); the proportion of cells in G1 phase in group B was about 74.4%, showing significant difference when compared with group C (P<0.05). BrdU content in group A was significantly lower than that in groups B and C at 3 and 6 days after co-culture (P<0.05), but no significant difference was found between groups B and C at 3 days (P>0.05); Brdu content in group B was also significantly reduced when compared with group C (P<0.05) at 6 days. At 6 days, SA-β-gal activity was significantly increased in groups A and B, and significant difference was shown in SA-β-gal positive cell number between groups (P <0.05). ConclusionPremature senescence of NPCs can down-regulate the proliferation capacity of co-cultured BMSCs by the paracrine effect. The greater proportion of NPCs with premature senescence is, the earlier senescence of BMSCs will be induced.

          Release date: Export PDF Favorites Scan
        • RESEARCH PROGRESS OF NUCLEUS PULPOSUS CELLS PHENOTYPIC MARKERS

          Objective Toreview theresearch progress of nucleus pulposus cells phenot ypic markers. Methods The domestic and international l iterature about nucleus pulposus cells phenotypic markers was reviewed extensively and summarized. Results Due to different biomechanical properties,nucleus pulposus cells and articular chondrocytes have differences in morphology and extracellular components such as the ratio of aggrecan to collagen type II α1. Nucleus pulposus cells can be identified by surface marker (CD24), gene markers (hypoxia inducible factor 1α, glucosetransporter protein 1, matrix metalloproteinase 2, vascular endothel ial growth factor A, etc), and various markers (keratin 19 and glypican 3,paired box 1, forkhead box F1 and integrin-binding sialoprotein, etc). Conclusion Nucleus pulposus cells and articular chondrocytes have different phenotypic markers, but nucleus pulposus cells are still lack of specific markers.

          Release date:2016-08-31 05:44 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜