Objective To investigate the detection of multidrug-resistant organisms (MDRO) by targeted monitoring in a tertiary hospital, and to understand the distribution of MDRO. Methods We retrospectively analyzed the detection and distribution of methicillin-resistantStaphylococcus aureus (MRSA), carbon black alkeneAcinetobacter baumannii (CRABA), carbapenem-resistantPseudomonas aeruginosa (CRPAE), vancomycin-resistantEnterococci (VRE) and carbapenem-resistantEnterobacter (CRE) in clinical samples collected from 2013 to 2015. Results A total of 990 multidrug-resistant bacteria strains were isolated from 2013 to 2015, of which 445 were MRSA (44.95%), 328 were CRABA (33.13%), 99 were CRPAE (10.00%), 12 were VRE (1.21%), and 106 were CRE (10.71%). They were mainly distributed in the Department of Burn, Comprehensive ICU, Department of Neurosurgery, Department of Respiratory Medicine and Department of Orthopedic Surgery. The detection rates of multidrug-resistant organisms of 2013-2015 were 10.85% (352/3 244), 9.20% (304/3 303), and 7.11% (334/4 699) respectively, which reduced year by year with significant difference (χ2= 34.42,P< 0.001). The detection rates of CRPAE, CRE and VRE all reduced with significant differences (P< 0.05). Conclusions The detection rate of multidrug-resistant organisms under targeted monitoring shows an obvious downward trend. MRSA and CRABA are still the major MDROs, which show no obvious change. The detection rates of CRPAE, VRE and CRE show obvious downward trend. Department of Burn, Comprehensive ICU, Department of Neurosurgery, Department of Respiratory Medicine and Department of Orthopedic Surgery have the highest risks of MDRO. In the future, we should strengthen the monitoring of high-risk departments, and focus on the reasonable choice of special antimicrobial agents to avoid special MDROs.
ObjectiveTo construct the recombinant adenovirus vector carrying antisense multidrug resistanceassociated protein (MRP) and transfect the human drugresistant hepatocellular carcinoma cell line(SMMC7721/ADM). MethodsThe fragment of MRP gene encoding 5′region was cloned reversely into the shuttle plasmid pAdTrackCMV, with the resultant plasmid and the backbone plasmid pAdEasy1,the homologous recombination took place in the bacteria and the recombinant adenoviral plasmid was generated. The adenoviruses were packaged and amplified in 293 cells. Then the cell line of SMMC7721/ADM was transfected with the resultant adenoviruses.ResultsThe recombinant adenovirus vector carrying antisense MRP was constructed successfully. The viral titer was 2.5×109 efu/ml, and more than 90% SMMC7721/ADM cells could be transfected when the multiplicity of infection(MOI) was 100. ConclusionThe recombinant adenovirus vector constructed by us could introduce the antisense MRP into the human drugresistant hepatocellular cell line effectively, which would provide experimental basis for the mechanisms and reversal methods of the multidrug resistance in human hepatocellular carcinoma.
【Abstract】Objective To review the advances in overcoming multidrug resistance of tumors caused by mdr1 gene.Methods Different ways of overcoming multidrug resistance of tumors caused by mdr1 gene in the literatures were reviewed. Results One of the important reasons causing multidrug resistance was due to the overexpression of mdr1 gene and its product Pglycoprotein. There were two ways to overcome multidrug resistance of tumors through mdr1 genes mRNA and its product Pglycoprotein effectively.Conclusion The clinical test of the unitary way to overcome multidrug resistance of tumors is unsatisfactory, combining different ways to overcome multidrug resistance of tumors will be the hot spot of tumors research in the future.
【Abstract】ObjectiveTo construct an mdr1 expression vector and detect its expression in HepG2 cells in vitro. MethodsThe 4.5-kb mdr1 cDNA was obtained from the plasmid pHaMDR1 cloned into the PCIneo mammalian expression vector, which was later transferred into human hepatocarcinoma cell line HepG2 by liposome. Then the HepG2 cells resisting G418 were clustered and proliferated,and the specific fragment of mdr1 cDNA, mRNA and the Pgp in these HepG2 cells were detected by means of PCR, RT-PCR and FCM respectively. ResultsThe mdr1 expression vector was constructed successfully,and the stable multidrug resistance(MDR) hepatocarcinoma cell line (HepG2/mdr1) was developed as well. The outcome of PCR analysis showed that the specific fragment of mdr1 cDNA could be found in HepG2/mdr1 cells, but not in the nontransfection HepG2 cells. Furthermore,the content of the specific fragment of mdr1 mRNA and the expression of P-gp in HepG2/mdr1 cells were (59.7±7.9)% and (12.5±5.45)% respectively, the corresponding value in HepG2 cells were (16.9±3.2)% and (4.63±2.59)% respectively. The difference was statistically significant (P<0.05). ConclusionIt is praticable to develop MDR hepatocarcinoma cell line by transferring mdr1 cDNA into HepG2 cells, which is useful in the research of MDR mechanism.
【Abstract】ObjectiveTo construct a mrp1 expression vector and investigate its biological characteristics in HepG2 cells in vitro. MethodsThe 6.5 kb multidrug resistanceassociated protein (MRP) cDNA obtained from plasmid pGEM-mrp1 was cloned into the pCI-neo mammalian expression vector, which was later transferred into human hepatocarcinoma cell line HepG2 by liposome. Then the HepG2 cells resisting G418 were clustered and proliferated, and the mrp1 mRNA and MRP in these HepG2 cells were detected by means of RT-PCR and FCM respectively. ResultsThe mrp1 expression vector was established successfully, and the stable MDR hepatocarcinoma cell line (HepG2/mrp1) was developed as well. The content of the specific fragment of mrp1 mRNA was (56.8±6.37)% and MRP was 7.89 in the HepG2/mrp1 cells, the corresponding value in HepG2 cells was (9.67±3.26)% and 0.79 respectively. The difference was statistically significant (P<0.05). ConclusionIt is practicable to establish MDR hepatocarcinoma cell line by transferring mrp1 cDNA into HepG2 cells, which is useful in the research of MDR mechanism.
ObjectiveTo explore the prognostic risk factors of bloodstream infections caused by Acinetobacter baumannii in the hospital, to provide a basis for clinical diagnosis and treatment.MethodsA retrospective analysis was performed on the medical records of patients diagnosed with Acinetobacter baumannii bloodstream infection in Guangxi Zhuang Autonomous Region People’s Hospital between January 2013 and December 2018. The patients were divided into survival group and non-survival group according to the outcome within 30 days after blood culture was collected. Univariate and multivariate logistic analyses were used to identify the risk factors of Acinetobacter baumannii bloodstream infections.ResultsA total of 123 patients were included, including 48 in the survival group and 75 in the non-survival group. Third generation cephalosporins [odds ratio (OR)=2.492, 95% confidence interval (CI) (2.125, 2.924), P<0.001], carbapenems [OR=1.721, 95%CI (1.505, 1.969), P<0.001], multidrug resistant-Acinetobacter baumannii infection [OR=1.240, 95%CI (1.063, 1.446), P=0.006], post-operation [OR=0.515, 95%CI (0.449, 0.590), P<0.001], mechanical ventilation [OR=1.182, 95%CI (1.005, 1.388), P=0.043], indwelling central venous catheter [OR=0.116, 95%CI (0.080, 0.169), P<0.001], mixed infection or septic shock [OR=3.935, 95%CI (2.740, 5.650), P<0.001], APACHE Ⅱ score (≥15) [OR=5.939, 95%CI (5.029, 7.013), P<0.001], chronic kidney disease [OR=1.440, 95%CI (1.247, 1.662), P<0.001], immune system disease [OR=28.620, 95%CI (17.087, 47.937), P<0.001], use of corticosteroids [OR=0.520, 95%CI (0.427, 0.635), P<0.001], and combined antifungal agents [OR=0.814, 95%CI (0.668, 0.992), P=0.041] were independent factors for predicting the prognosis of patients with bloodstream infections caused by Acinetobacter baumannii.ConclusionsThe third generation cephalosporins, carbapenem, MDR-Acinetobacter baumannii infection, post-operation, mechanical ventilation, indwelling central venous catheter, mixed infection or septic shock, APACHE Ⅱ score (≥15), chronic kidney disease, immune system disease, use of corticosteroids, and combined antifungal agents were independent factors for predicting the prognosis of patients with bloodstream infections caused by Acinetobacter baumannii. In the clinical work, it is needed to carry out timely detection of microbial etiology, timely report, and reasonable treatment.
【Abstract】 Objective To detect the expression of lung resistance protein (LRP) and investigate its significance in pancreatic carcinoma cell lines (SW1990, PCT-2, PCT-3, PCT-4, Aspc-1, Capan-1, Mia-PaCa-2 and Panc-1). Methods Reverse transcription PCR (RT-PCR) and immunocytochemistry (ICC) were carried out to investigate the expression of LRP. Results LRP mRNA was absent in PCT-2 cell line by RT-PCR. Mild to moderate expression level was found in other pancreatic carcinoma cell lines. PCT-4, Aspc-1 and Panc-1 presented the highest LRP mRNA expression level, in contrast, SW1990, PCT-3, Capan-1 and Mia-PaCa-2 showed moderate LRP mRNA expression. The median value was 0.56±0.33. LRP was further validated by ICC. Absent to weak protein expression of LRP was found in PCT-2 and PCT-3. Overexpressed LRP was present in SW1990, Capan-1 and Aspc-1, furthermore, the highest expression of LRP was found in Panc-1, Mia-PaCa-2 and PCT-4 cell lines. Conclusion All these data showed that LRP might play an important role in multidrug resistance of pancreatic carcinoma.
Objective To investigate the effect of phosphorothioate antisense oligonucleotides(AS-ODN) on suppressing multidrug resistance-associated protein gene(MRP) in human drug-resistant hepatocellular carcinoma cell line (SMMC-7721/ADM). Methods Cell line was transfected with a synthetic S-ODN complementary to the coding region of MRP mRNA, Lipofectamine acting as carrier. The drug sensitivity was measured by MTT assay. The expression of MRP mRNA was detected by RT-PCR and the expression of P190 was detected by flow cytometry. Results AS-ODN inhibited expression of MRP mRNA and P190 and promoted sensitivity to daunorubicinum and adriamycinum. Conclusion AS-ODN can reduce the expression of MRP gene. MDR caused by MRP is an important cause of multidrug resistance of SMMC-7721/ADM.
ObjectiveTo establish multidrugresistance cell substrain of human hepatocellular carcinoma and to investigate its characteristics.MethodsSMMC7721 cell strain was cultured in Adriamycin(ADM). The multidrugresistance cell substrain SMMC7721/ADM was harvested after a long period of culture by gradually increasing the concentration of ADM and its characteristics were investigated. Results①The drug resistance of SMMC7721/ADM to ADM increased by 33.3 times, to Vincristine 16.8 times, to Diamminedichloroplatinum 2.8 times. ②The drug resistance cell substrain had almost the same growth velocity as its parental generation. The doubling time was 32.0 hours and 30.5 hours respectively. They had the analogous growth curves. ③The obvious difference between the drug resistance cell substrain and its parental generation was that the former’s microvilli became thick, short and scattered by scanning and transmitting electron microscopy. ④The multidrug resistance cell substrain kept the characteristics of hepatocellular carcinoma, it could be transplanted into the subcutaneous tissue of nude mice. ⑤The drug resistance of the cell substrain reduced to 28.0% and 9.2%after removal of the drug for 1 month and 2 months respectively, its drug resistance could remain stable (35.4 times) after 2 months of culture in ADM (0.04 μg/ml).ConclusionThe SMMC7721/ADM cell substrain has the stable fundamental characteristics of a drug resistance cell strain.
Objective To dynamically study the formation of multidrug resistance(MDR) of human hepatocellular carcinoma cell SMMC-7721 induced by Adriamycin (ADM) and the role of multidrug resistance-associated protein(MRP) in its mechanisms.Methods Hepatocellular carcinoma cell SMMC-7721 was cultured in RPMI-1640 medium containing ADM with progressively increased concentration or directly cultured in medium containing different concentrations of ADM. Resistant index of drug-resistant variants of SMMC-7721 cell was determined by drawing cell dosage-reaction curves.Levels of MRP mRNA expression were detected by reverse transcription-polymerase chain reaction(RTPCR). Intracellular rubidomycin(DNR) concentration was examined by flow cytometry(FCM).Results With progressive increasing of ADM concentration in medium resistant index and levels of MRP mRNA expression were correspondingly increased but intracellular DNR concentration was markly reduced. When parental cells were directly cultured in medium containing different concentrations of ADM, the higher the ADM concentration, the higher the level of MRP mRNA expression, but intracellular DNR concentration was kept at the similar high level and most cells died. Conclusion ADM may progressively induce SMMC-7721 cell resistant to multiple chemotherapeutic drugs with reduced intracellular DNR accumulation associated with the overexpression of MRP gene.