• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "D打印" 91 results
        • Study on NaOH improving the surface morphology of three-dimensional printed poly-L- lactic acid mesh scaffolds

          Objective To explore the effect of NaOH on the surface morphology of three-dimensional (3D) printed poly-L-lactic acid (PLLA) mesh scaffolds. Methods The 3D printed PLLA mesh scaffolds were prepared by fused deposition molding technology, then the scaffold surfaces were etched with the NaOH solution. The concentrations of NaOH solution were 0.01, 0.1, 0.5, 1.0, and 3.0 mol/L, and the treatment time was 1, 3, 6, 9, and 12 hours, respectively. There were a total of 25 concentration and time combinations. After treatment, the microstructure, energy spectrum, roughness, hydrophilicity, compressive strength, as well as cell adhesion and proliferation of the scaffolds were observed. The untreated scaffolds were used as a normal control. Results 3D printed PLLA mesh scaffolds were successfully prepared by using fused deposition molding technology. After NaOH etching treatment, a rough or micro porous structure was constructed on the surface of the scaffold, and with the increase of NaOH concentration and treatment time, the size and density of the pores increased. The characterization of the scaffolds by energy dispersive spectroscopy showed that the crystal contains two elements, Na and O. The surface roughness of NaOH treated scaffolds significantly increased (P<0.05) and the contact angle significantly decreased (P<0.05) compared to untreated scaffolds. There was no significant difference in compressive strength between the untreated scaffolds and treated scaffolds under conditions of 0.1 mol/L/12 h and 1.0 mol/L/3 h (P>0.05), while the compression strength of the other treated scaffolds were significantly lower than that of the untreated scaffolds (P<0.05). After co-culturing the cells with the scaffold, NaOH treatment resulted in an increase in the number of cells on the surface of the scaffold and the spreading area of individual cells, and more synapses extending from adherent cells. Conclusion NaOH treatment is beneficial for increasing the surface hydrophilicity and cell adhesion of 3D printed PLLA mesh scaffolds.

          Release date:2024-03-13 08:50 Export PDF Favorites Scan
        • APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS

          ObjectiveTo fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. MethodsThree female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. ResultsMRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20±0.52) mm and short transverse diameter of (2.05±0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. ConclusionSpinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.

          Release date: Export PDF Favorites Scan
        • Effectiveness analysis of computer-aided technology in the treatment of primary elbow osteoarthritis combined with stiffness under arthroscopy

          Objective To explore the effectiveness of computer-aided technology in the treatment of primary elbow osteoarthritis combined with stiffness under arthroscopy. Methods The clinical data of 32 patients with primary elbow osteoarthritis combined with stiffness between June 2018 and December 2020 were retrospectively analyzed. There were 22 males and 10 females with an average age of 53.4 years (range, 31-71 years). X-ray film and three-dimensional CT examinations showed osteophytes of varying degrees in the elbow joint. Loose bodies existed in 16 cases, and there were 7 cases combined with ulnar nerve entrapment syndrome. The median symptom duration was 2.5 years (range, 3 months to 22.5 years). The location of bone impingement from 0° extension to 140° flexion of the elbow joint was simulated by computer-aided technology before operation and a three-dimensional printed model was used to visualize the amount and scope of impinging osteophytes removal from the anterior and posterior elbow joint to accurately guide the operation. Meanwhile, the effect of elbow joint release and impinging osteophytes removal was examined visually under arthroscopy. The visual analogue scale (VAS) score, Mayo elbow performance score (MEPS), and elbow range of motion (extension, flexion, extension and flexion) were compared between before and after operation to evaluate elbow function. Results The mean operation time was 108 minutes (range, 50-160 minutes). All 32 patients were followed up 9-18 months with an average of 12.5 months. There was no other complication such as infection, nervous system injury, joint cavity effusion, and heterotopic ossification, except 2 cases with postoperative joint contracture at 3 weeks after operation due to the failure to persist in regular functional exercises. Loose bodies of elbow and impinging osteophytes were removed completely for all patients, and functional recovery was satisfactory. At last follow-up, VAS score, MEPS score, extension, flexion, flexion and extension range of motion significantly improved when compared with preoperative ones (P<0.05). Conclusion Arthroscopic treatment of primary elbow osteoarthritis combined with stiffness using computer-aided technology can significantly reduce pain, achieve satisfactory functional recovery and reliable effectiveness.

          Release date:2022-03-22 04:55 Export PDF Favorites Scan
        • RESEARCH PROGRESS OF ADIPOSE-DERIVED STEM CELLS COMPOUND WITH THREE DIMENSIONAL PRINTING SCAFFOLD FOR ENGINEERED TISSUE

          ObjectiveTo review the research progress of adipose-derived stem cells (ADSCs) compound with three dimensional (3D) printing scaffold in tissue engineering of fat, bone, cartilage, blood vessel, hepatocyte, and so on. MethodsThe recently published literature about ADSCs compound with 3D printing scaffold in tissue engineering at home and abroad was reviewed, analyzed, and summarized. ResultsA large number of basic researches showed that ADSCs could differentiate into a variety of tissues on 3D printing scaffold and involve in tissue repair and regeneration. But there is still a long way between the basic theory and the clinical practice at the early stages of development. ConclusionIt can effectively improve and restore the structure and function of the damaged tissue and organ to use ADSCs and 3D printing scaffold.

          Release date: Export PDF Favorites Scan
        • PRELIMINARY APPLICATION OF THREE-DIMENSIONAL PRINTING PERSONALIZED EXTERNAL FIXATOR IN SERIOUS TIBIOFIBULA FRACTURES

          ObjectiveTo explore a new method of treating serious tibiofibula comminuted fracture by using three-dimensional (3-D) printing personalized external fixator. MethodsIn April 2015, a male patient (aged 18 years with a height of 171 cm and a weight of 67 kg) with left tibiofibula comminuted fracture was included in the study. Computer-assisted reduction technique combined with 3-D printing was used to develop a customised personalized external fixator for fracture reduction. The effectiveness was observed. ResultsThe operation time was about 10 minutes without fluoroscopy, and successful reduction was obtained. The patient had equal limb length after operation. X-ray films showed that the posterior angulation of distal fracture was corrected 37°, and the eversion angle was corrected 4°. The tibial fractures had good paraposition or alignment, and the lower limb force line was corrected completely. No new fracture displacement occurred. The clinical healing time of fracture was 3.5 months and the bone union was achieved after 8 months. The function of affected limb recovered well after operation. ConclusionA personalized external fixator for serious tibiofibula comminuted fracture reduction made by 3-D printing technique has the merits of easy manipulation, high individuation, accurate reduction, stable fixation, and no need of fluoroscopy.

          Release date: Export PDF Favorites Scan
        • Biomechanical characteristics and clinical application of three-dimensional printed osteotomy guide plate combined with Ilizarov technique in treatment of rigid clubfoot

          ObjectiveTo explore the biomechanical characteristics and clinical application effects of three-dimensional (3D) printed osteotomy guide plate combined with Ilizarov technique in the treatment of rigid clubfoot. Methods A retrospective analysis was performed on the clinical data of 11 patients with rigid clubfoot who met the inclusion criteria and were admitted between January 2019 and December 2024. There were 6 males and 5 females, aged 21-60 years with an average of 43.2 years. Among them, 5 cases were untreated congenital rigid clubfoot, 4 cases were recurrent rigid clubfoot after previous treatment, and 2 cases were rigid clubfoot due to disease sequelae. All 11 patients first received slow distraction using Ilizarov technique combined with circular external fixator until the force lines of the foot and ankle joint were basically normal. Then, 1 male patient aged 24 years was selected, and CT scanning was used to obtain imaging data of the ankle joint and foot. A 3D finite element model was established and validated using the plantar stress distribution nephogram of the patient. After validation, the biomechanical changes of the tibiotalar joint under the same load were simulated after triple arthrodesis and fixation. The optimal correction angle of the hindfoot was determined to fabricate 3D-printed osteotomy guide plates, and all 11 patients underwent triple arthrodesis using these guide plates. The functional recovery was evaluated by comparing the American Orthopaedic Foot and Ankle Society (AOFAS) score, International Clubfoot Study Group (ICFSG) score, and 36-Item Short Form Survey (SF-36) score before and after operation. Results Finite element analysis showed that the maximum peak von Mises stress of the tibiotalar joint was at hindfoot varus 3° and the minimum at valgus 6°; the maximum peak von Mises stress of the 3 naviculocuneiform joints under various conditions appeared at lateral naviculocuneiform joint before operation, and the minimum appeared at lateral naviculocuneiform joint at neutral position 0°; the maximum peak von Mises stress of the 5 tarsometatarsal joints under various conditions appeared at the 2nd tarsometatarsal joint at hindfoot neutral position 0°, and the minimum appeared at the 1st tarsometatarsal joint at valgus 6°. Clinical application results showed that the characteristics of clubfoot deformity observed during operation were consistent with the preoperative 3D reconstruction model. All 11 patients were followed up 8-24 months with an average of 13.1 months. One patient had postoperative incision exudation, which healed after dressing change; the remaining patients had good incision healing. All patients achieved good healing of the osteotomy segments, with a healing time of 3-6 months and an average of 4.1 months. At last follow-up, the AOFAS score, SF-36 score, and ICFSG score significantly improved when compared with those before operation (P<0.05). ConclusionThe 3D-printed osteotomy guide plate combined with Ilizarov technique has favorable biomechanical advantages in the treatment of rigid clubfoot, with significant clinical application effects. It can effectively improve the foot function of patients and achieve precise and personalized treatment.

          Release date:2025-08-04 02:48 Export PDF Favorites Scan
        • Relation between the length of navigation pipe and accuracy of screw placement in cervical pedicle screw placement assisted by 3D printed navigation template

          Objective To evaluate the deviation between actual and simulated screw placement after cervical pedicle screw placement assisted by 3D printed navigation template, and analyze the correlation between screw placement deviation and navigation pipe length. Methods A total of 40 patients undergoing cervical 1-7 pedicle screw insertion assisted by 3D printed navigation template in Zigong Fourth People’s Hospital between February 2018 and August 2020 were included in this prospective study. These patients were divided into 3 groups randomly, including 12 patients with a 5-mm pipe length (5 mm group), 13 patients with a 10-mm pipe length (10 mm group), and 15 patients with a 15-mm pipe length (15 mm group). Three-dimensional modeling was performed on preoperative cervical CT images of these patients and simulated pedicle screw was placed. Individualized pedicle screw navigation templates were designed according to the position and direction of simulated pedicle screws, and 3D printing was performed on the cervical model and navigation templates. Preoperative 3D printed model and navigation templates were used to simulate the surgical process to confirm the safety of screws. During the operation, pedicle screw placement was performed according to the preoperative design and simulated surgical process. The postoperative CT images were registered with the preoperative CT images in 3D model. The safety of screw placement was evaluated by the postoperative screw placement Grade, and the accuracy of screw placement was evaluated by measuring the deviation of screw placement point and the deviation of screw placement direction in horizontal plane (inclination angle) and sagittal plane (head inclination angle). The influence of different navigation pipe lengths on the safety and accuracy of screw placement was analyzed. Results A total of 164 pedicle screws were inserted with navigation template assistance, including 48 screws (38 in Grade 0 and 10 in Grade 1) in the 5 mm group, 52 screws in the 10 mm group (all in Grade 0), and 64 screws (52 in Grade 0 and 12 in Grade 1) in the 15 mm group, and the difference in the grade among the three groups was statistically significant (P<0.05). When the navigation pipe length was 5, 10, and 15 mm, respectively, the screw entry point deviation was (1.87±0.63), (1.44±0.63), and (1.66±0.54) mm, respectively, the inclination angle deviation was (2.72±0.25), (0.90±0.21), and (1.84±0.35)°, respectively, and the head inclination angle deviation was (8.63±1.83), (7.15±1.38), and (8.24±1.52)°, respectively. The deviations in the 10 mm group were all significantly less than those in the other two groups (P<0.05). Conclusions In the cervical pedicle screw placement assisted by navigation template, all the screws were Grade 0 or Grade 1, with high safety. The mean deviation of the screw entry point is within 2 mm, with high accuracy. When the length of navigation pipe is 10 mm, the safety and accuracy of screw placement can be fully guaranteed.

          Release date:2021-11-25 03:04 Export PDF Favorites Scan
        • Effectiveness comparison of anterior cervical discectomy and fusion with zero-profile three-dimensional-printed interbody fusion Cage and titanium plate fusion Cage

          Objective To compare the effectiveness of a zero-profile three-dimensiaonal (3D)-printed microporous titanium alloy Cage and a conventional titanium plate combined with a polyether-ether-ketone (PEEK)-Cage in the treatment of single-segment cervical spondylotic myelopathy (CSM) by anterior cervical discectomy and fusion (ACDF). Methods The clinical data of 83 patients with single-segment CSM treated with ACDF between January 2022 and January 2023 were retrospectively analyzed, and they were divided into 3D-ZP group (35 cases, using zero-profile 3D-printed microporous titanium alloy Cage) and CP group (48 cases, using titanium plate in combination with PEEK-Cage). There was no significant difference in gender, age, disease duration, surgical intervertebral space, and preoperative Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score, neck disability index (NDI), vertebral height at the fusion segment, Cobb angle, and other baseline data between the two groups (P>0.05). The operation time, intraoperative blood loss, hospital stay, complications, interbody fusion, and prosthesis subsidence were recorded and compared between the two groups. VAS score, NDI, and JOA score were used to evaluate the improvement of pain and function before operation, at 3 months after operation, and at last follow-up, and the vertebral height at the fusion segment and Cobb angle were measured by imaging. The degree of dysphagia was assessed by the Bazaz dysphagia scale at 1 week and at last follow-up. Results The operation was successfully completed in all the 83 patients. There was no significant difference in intraoperative blood loss and hospital stay between the two groups (P>0.05), but the operation time in the 3D-ZP group was significantly shorter than that in the CP group (P<0.05). Patients in both groups were followed up 24-35 months, with an average of 25.3 months, and there was no significant difference in the follow-up time between the two groups (P>0.05). The incidence and grade of dysphagia in CP group were significantly higher than those in 3D-ZP group at 1 week after operation and at last follow-up (P<0.05). There was no dysphagia in 3D-ZP group at last follow-up. There was no complication such as implant breakage or displacement in both groups. The intervertebral fusion rates of 3D-ZP group and CP group were 65.71% (23/35) and 60.42% (29/48) respectively at 3 months after operation, and there was no significant difference between the two groups [OR (95%CI)=1.256 (0.507, 3.109), P=0.622]. The JOA score, VAS score, and NDI significantly improved in the 3D-ZP group at 3 months and at last follow-up when compared with preoperative ones (P<0.05), but there was no significant difference between the two groups (P>0.05). There was no significant difference in the improvement rate of JOA between the two groups at last follow-up (P>0.05). At 3 months after operation and at last follow-up, the vertebral height at the fusion segment and Cobb angle significantly improved in both groups, and the two indexes in 3D-ZP group were significantly better than those in CP group (P<0.05). At last follow-up, the incidence of prosthesis subsidence in 3D-ZP group (8.57%) was significantly lower than that in CP group (29.16%) (P<0.05). ConclusionThe application of zero-profile 3D-printed Cage and titanium plate combined with PEEK-Cage in single-segment ACDF can both reconstruct the stability of cervical spine and achieve good effectiveness. Compared with the latter, the application of the former in ACDF can shorten the operation time, reduce the incidence of prosthesis subsidence, and reduce the incidence of dysphagia.

          Release date:2025-09-01 10:12 Export PDF Favorites Scan
        • PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY

          ObjectiveTo prepare bionic spinal cord scaffold of collagen-heparin sulfate by three-dimensional (3-D) printing, and provide a cell carrier for tissue engineering in the treatment of spinal cord injury. MethodsCollagen-heparin sulfate hydrogel was prepared firstly, and 3-D printer was used to make bionic spinal cord scaffold. The structure was observed to measure its porosity. The scaffold was immersed in simulated body fluid to observe the quality change. The neural stem cells (NSCs) were isolated from fetal rat brain cortex of 14 days pregnant Sprague-Dawley rats and cultured. The experiment was divided into 2 groups: in group A, the scaffold was co-cultured with rat NSCs for 7 days to observe cell adhesion and morphological changes;in group B, the NSCs were cultured in 24 wells culture plate precoating with poly lysine. MTT assay was used to detect the cell viability, and immunofluorescence staining was used to identify the differentiation of NSCs. ResultsBionic spinal cord scaffold was fabricated by 3-D printer successfully. Scanning electron microscope (SEM) observation revealed the micro porous structure with parallel and longitudinal arrangements and with the porosity of 90.25%±2.15%. in vitro, the value of pH was not changed obviously. After 8 weeks, the scaffold was completely degraded, and it met the requirements of tissue engineering scaffolds. MTT results showed that there was no significant difference in absorbence (A) value between 2 groups at 1, 3, and 7 days after culture (P>0.05). There were a lot of NSCs with reticular nerve fiber under light microscope in 2 groups;the cells adhered to the scaffold, and axons growth and neurosphere formation were observed in group A under SEM at 7 days after culture. The immunofluorescence staining observation showed that NSCs could differentiated into neurons and glial cells in 2 groups;the differentiation rate was 29.60%±2.68% in group A and was 10.90%±2.13% in group B, showing significant difference (t=17.30, P=0.01). ConclusionThe collagen-heparin sulfate scaffold by 3-D-printed has good biocompatibility and biological properties. It can promote the proliferation and differentiation of NSCs, and can used as a neural tissue engineered scaffold with great value of research and application.

          Release date: Export PDF Favorites Scan
        • Application of personalized three-dimensional printed customized prostheses in severe Paprosky type Ⅲ acetabular bone defects

          Objective To analyze the short-term effectiveness and safety of personalized three-dimensional (3D) printed customized prostheses in severe Paprosky type Ⅲ acetabular bone defects. Methods A retrospective analysis was conducted on 8 patients with severe Paprosky type Ⅲ acetabular bone defects and met the selection criteria between January 2023 and June 2024. There were 3 males and 5 females, with an average age of 64.6 years ranged from 56 to 73 years. All primary replacement prostheses were non-cemented, including 1 ceramic-ceramic interface, 1 ceramic-polyethylene interface, and 6 metal-polyethylene interfaces. The time from the primary replacement to the revision was 4 days to 18 years. The reasons for revision were aseptic loosening in 5 cases, revision after exclusion in 2 cases, and repeated dislocation in 1 case. The preoperative Harris score was 39.5±3.7 and the visual analogue scale (VAS) score was 7.1±0.8. The operation time, intraoperative blood loss, hospital stay, and complications were recorded. The hip function was evaluated by Harris score, and the degree of pain was evaluated by VAS score. The acetabular cup abduction angle, anteversion angle, rotational center height, greater trochanter height, and femoral offset were measured on X-ray film. Results The operation time was 95-223 minutes, with an average of 151.13 minutes. The intraoperative blood loss was 600-3 500 mL, with an average of 1 250.00 mL. The hospital stay was 13-20 days, with an average of 16.88 days. All 8 patients were followed up 2-12 months, with an average of 6.4 months. One patient had poor wound healing after operation, which healed well after active symptomatic treatment. One patient had lower limb intermuscular vein thrombosis, but no thrombosis was found at last follow-up. No serious complications such as aseptic loosening, infection, dislocation, and periprosthetic fracture occurred during the follow-up. At last follow-up, the Harris score was 72.0±6.2 and the VAS score was 1.8±0.7, which were significantly different from those before operation (t=?12.011, P<0.001; t=16.595, P<0.001). On the second day after operation, the acetabular cup abduction angle ranged from 40° to 49°, with an average of 44.18°, and the acetabular cup anteversion angle ranged from 19° to 26°, with an average of 21.36°, which were within the “Lewinneck safety zone”. There was no significant difference in the rotational center height, greater trochanter height, and femoral offset between the healthy side and the affected side (P>0.05). ConclusionThe use of personalized 3D printed customized prostheses for the reconstruction of severe Paprosky type Ⅲ acetabular bone defects can alleviate pain and enhances hip joint function, and have good postoperative prosthesis position, without serious complications and have good safety.

          Release date:2025-01-13 03:55 Export PDF Favorites Scan
        10 pages Previous 1 2 3 ... 10 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜