• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "3D printing" 23 results
        • Preliminary exploration of the domestic balloon-expandable valve in the treatment of degenerated tricuspid bioprosthetic valve via transcatheter "valve-in-valve" technology

          ObjectiveTo discuss the operation skill and clinical effects of using domestic balloon-expandable Prizvalve? transcatheter "valve-in-valve" to treat the degenerated bioprosthesis in the tricuspid position.MethodsAll the admitted surgical tricuspid valve bioprosthetic valve replacement patients were evaluated by computerized tomography angiography (CTA), ultrasound, and 3D printing technology, and 2 patients with a degenerated bioprosthesis were selected for tricuspid valve "valve-in-valve" operation. Under general anesthesia, the retro-preset Prizvalve? system was implanted into degenerated tricuspid bioprosthesis via the femoral vein approach under the guidance of transesophageal echocardiographic and fluoroscopic guidance.ResultsTranscatheter tricuspid valve implantation was successfully performed in both high-risk patients, and tricuspid regurgitation disappeared immediately. The operation time was 1.25 h and 2.43 h, respectively. There was no serious complication in both patients, and they were discharged from the hospital 7 days after the operation.ConclusionThe clinical effect of the degenerated tricuspid bioprosthetic valve implantation with domestic balloon-expandable valve via femoral vein approach "valve-in-valve" is good. Multimodality imaging and 3D printing technology can safely and effectively guide the implementation of this innovative technique.

          Release date:2021-07-28 10:22 Export PDF Favorites Scan
        • Application of 3D printing technology in the personalized surgery of right ventricular double outlet

          ObjectiveTo evaluate the clinical value of three-dimensional (3D) printing model in accurate and minimally invasive treatment of double outlet right ventricle (DORV).MethodsFrom August 2018 to August 2019, 35 patients (22 males and 13 females) with DORV aged from 5 months to 17 years were included in the study. Their mean weight was 21.35±8.48 kg. Ten patients who received operations guided by 3D printing model were allocated to a 3D printing model group, and the other 25 patients who received operations without guidance by 3D printing model were allocated to a non-3D printing model group. Preoperative transthoracic echocardiography and CT angiography were performed to observe the location and diameter of ventricular septal defect (VSD), and to confirm the relationship between VSD and double arteries.ResultsThe McGoon index of patients in the 3D printing model group was 1.91±0.70. There was no statistical difference in the size of VSD (13.20±4.57 mm vs. 13.40±5.04 mm, t=?0.612, P=0.555), diameter of the ascending aorta (17.10±2.92 mm vs. 16.90±3.51 mm, t=0.514, P=0.619) or diameter of pulmonary trunk (12.50±5.23 mm vs. 12.90±4.63 mm, t=?1.246, P=0.244) between CT and 3D printing model measurements. The Pearson correlation coefficients were 0.982, 0.943 and 0.975, respectively. The operation time, endotracheal intubation time, ICU stay time and hospital stay time in the 3D printing model group were all shorter than those in the non-3D printing model group (P<0.05).ConclusionThe relationship between VSD and aorta and pulmonary artery can be observed from a 3D perspective by 3D printing technology, which can guide the preoperative surgical plans, assist physicians to make reasonable and effective decisions, shorten intraoperative exploration time and operation time, and decrease the surgery-related risks.

          Release date:2021-04-25 09:57 Export PDF Favorites Scan
        • Relation between the length of navigation pipe and accuracy of screw placement in cervical pedicle screw placement assisted by 3D printed navigation template

          Objective To evaluate the deviation between actual and simulated screw placement after cervical pedicle screw placement assisted by 3D printed navigation template, and analyze the correlation between screw placement deviation and navigation pipe length. Methods A total of 40 patients undergoing cervical 1-7 pedicle screw insertion assisted by 3D printed navigation template in Zigong Fourth People’s Hospital between February 2018 and August 2020 were included in this prospective study. These patients were divided into 3 groups randomly, including 12 patients with a 5-mm pipe length (5 mm group), 13 patients with a 10-mm pipe length (10 mm group), and 15 patients with a 15-mm pipe length (15 mm group). Three-dimensional modeling was performed on preoperative cervical CT images of these patients and simulated pedicle screw was placed. Individualized pedicle screw navigation templates were designed according to the position and direction of simulated pedicle screws, and 3D printing was performed on the cervical model and navigation templates. Preoperative 3D printed model and navigation templates were used to simulate the surgical process to confirm the safety of screws. During the operation, pedicle screw placement was performed according to the preoperative design and simulated surgical process. The postoperative CT images were registered with the preoperative CT images in 3D model. The safety of screw placement was evaluated by the postoperative screw placement Grade, and the accuracy of screw placement was evaluated by measuring the deviation of screw placement point and the deviation of screw placement direction in horizontal plane (inclination angle) and sagittal plane (head inclination angle). The influence of different navigation pipe lengths on the safety and accuracy of screw placement was analyzed. Results A total of 164 pedicle screws were inserted with navigation template assistance, including 48 screws (38 in Grade 0 and 10 in Grade 1) in the 5 mm group, 52 screws in the 10 mm group (all in Grade 0), and 64 screws (52 in Grade 0 and 12 in Grade 1) in the 15 mm group, and the difference in the grade among the three groups was statistically significant (P<0.05). When the navigation pipe length was 5, 10, and 15 mm, respectively, the screw entry point deviation was (1.87±0.63), (1.44±0.63), and (1.66±0.54) mm, respectively, the inclination angle deviation was (2.72±0.25), (0.90±0.21), and (1.84±0.35)°, respectively, and the head inclination angle deviation was (8.63±1.83), (7.15±1.38), and (8.24±1.52)°, respectively. The deviations in the 10 mm group were all significantly less than those in the other two groups (P<0.05). Conclusions In the cervical pedicle screw placement assisted by navigation template, all the screws were Grade 0 or Grade 1, with high safety. The mean deviation of the screw entry point is within 2 mm, with high accuracy. When the length of navigation pipe is 10 mm, the safety and accuracy of screw placement can be fully guaranteed.

          Release date:2021-11-25 03:04 Export PDF Favorites Scan
        • Advance in research of esophageal stent

          The esophageal disease is a major clinical disease. The esophageal stent has extensive clinical applications in the treatment of esophageal diseases. However, the clinical application of esophageal stent is limited, because there are lots of complications after implantation of esophageal stent. Biodegradable esophageal stent has two advantages: biodegradability and good histocompatibility. It is expected to solve a variety of complications of esophageal stent and provide a new choice for the treatment of esophageal diseases. Standardized esophageal stents are not fully applicable to all patients. The application of 3D printing technology in the manufacture of biodegradable esophageal stent can realize the individualized treatment of esophageal stent. And meanwhile, the 3D printing technology can reduce the manufacturing cost of the stent. This review aimed to summarize and discuss the application of esophageal stent, the current research status and prospect of biodegradable esophageal stent and the prospect of 3D printing technology in degradable esophageal stent, hoping to provide evidence and perspectives for the research of biodegradable esophageal stent.

          Release date:2018-01-31 02:46 Export PDF Favorites Scan
        • Applications of 3D printing technology in the treatment of mitral valve disease

          Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.

          Release date:2019-04-29 02:51 Export PDF Favorites Scan
        • Application of 3D printing in the diagnosis and surgical treatment of congenital tracheal stenosis

          Objective To assess the application value of 3-dimensional(3D) printing technology in surgical treatment for congenital tracheal stenosis. Methods We retrospectively analyzed the clinical data of preoperative diagnosis, intra-operative decision-making and postoperative follow-up of four children with congenital tracheal stenosis under the guidance of 3D printing in our hospital between February 2013 and May 2014. There were 3 males and 1 female aged 23.0±7.1 months. Among them, two children were with pulmonary artery sling, one with ventricular septal defect, and the other one with tetralogy of Fallot. The airway stenosis was diagnosed preoperatively by chest CT scan and 3D printing tracheal models, and was confirmed by the help of bronchoscopy under anesthesia. During operation the associated cardiac malformation was corrected firstly under extracorporeal circulation followed by tracheal malformation remedy. The design and implementation of tracheal operation plans were guided by the shape and data from 3D printing trachea models. There were two patients with long segment of tracheal stenosis who received slide anastomosis. And the other two patients were characterized with tracheal bronchus, one of which combined ostial stenosis of right bronchial performed extensive slide anastomosis, and the other one performed end to end anastomosis. Results All the children’s preoperative 3D printing trachea models were in accord with bronchoscopy and intra-operative exploration results. Intra-operative bronchoscopy confirmed that all tracheal stenosis cured completely. All anastomotic stomas were of integrity, and all the luminals were fluent. There was no operative death or no serious complication. During 1-2 years follow-up, all patients breathed smoothly and their airways were of patency by postoperative 3D printing trachea model. Conclusion 3D printing can provide a good help to congenital tracheal stenosis in preoperative diagnosis, the design of operation plan, intra-operative decision-making and manipulation, which can improve the operation successful rate of tracheal stenosis.

          Release date:2017-03-24 03:45 Export PDF Favorites Scan
        • Research progress of shear-thinning bioink in 3D bioprinting tissue trachea

          Shear thinning is an ideal feature of bioink because it can reduce the chance of blocking. For extrusion based biological printing, bioink will experience shear force when passing through the biological printer. The shear rate will increase with the increase of extrusion rate, and the apparent viscosity of shear-thinning bioink will decrease, which makes it easier to block, thus achieving the structural fidelity of 3D printing tissue. The manufacturing of complex functional structures in tissue trachea requires the precise placement and coagulation of bioink layer by layer, and the shear-thinning bioink may well meet this requirement. This review focuses on the importance of mechanical properties, classification and preparation methods of shear-thinning bioink, and lists its current application status in 3D printing tissue trachea to discuss the more possibilities and prospects of this biological material in tissue trachea.

          Release date: Export PDF Favorites Scan
        • Evaluation of 3D printing technology before transcatheter aortic valve replacement surgery

          Aortic valve disease is one of the major diseases threatening human health. Transcatheter aortic valve replacement (TAVR) is a new treatment for aortic disease. Preoperative evaluation is of great significance to the successful operation and the long-term quality of life of patients. The 3D printing technology can fully simulate the cardiac anatomy of patients, create personalized molds for patients, improve surgical efficiency, reduce surgical time and surgical trauma, and thus achieve better surgical results. In this review, the relevant literatures were searched, and the evaluation effect of 3D printing technology on the operation of TAVR was reviewed, so as to provide clinical reference.

          Release date:2022-03-18 02:44 Export PDF Favorites Scan
        • Progress on Diagnosis and Treatment of Congenital Tracheal Stenosis

          Congenital tracheal stenosis (CTS) is a rare but potentially life-threatening disease which results in congnital airway lesion. CTS is often associated with cardiovascular anomalies and presented with a wide spectrum of symptoms. CTS has challenged pediatric surgeons for decades. Various classic approaches and new techniques, including computational fluid dynamics, tissue-engineering trachea, and 3D printing have been proposed for diagnosis and treatment of CTS. This review provides a snapshot of the main progress of diagnosis and treatment of CTS.

          Release date: Export PDF Favorites Scan
        • Advances in the application of 3D printing technology in chest wall disease surgery

          Because of the characteristics such as accurate, efficient and individuation, 3D printing is being widely applied to manufacturing industry, and being gradually expanded into the medical field. Diseases of chest wall is a common type in thoracic surgery, and surgery is a proper treatment to this kind of disease. For the past few years, 3D printing is being gradually applied in surgery of chest wall diseases. The article mainly makes a statement of two parts that including the possibility to apply 3D printing including chest wall reconstruction and chest wall orthopedic, and to analyze the possibility and application prospect of applying 3D printing to the chest wall disease.

          Release date:2018-11-02 03:32 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜