• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "3D printing" 23 results
        • Preliminary exploration of the domestic balloon-expandable valve in the treatment of degenerated tricuspid bioprosthetic valve via transcatheter "valve-in-valve" technology

          ObjectiveTo discuss the operation skill and clinical effects of using domestic balloon-expandable Prizvalve? transcatheter "valve-in-valve" to treat the degenerated bioprosthesis in the tricuspid position.MethodsAll the admitted surgical tricuspid valve bioprosthetic valve replacement patients were evaluated by computerized tomography angiography (CTA), ultrasound, and 3D printing technology, and 2 patients with a degenerated bioprosthesis were selected for tricuspid valve "valve-in-valve" operation. Under general anesthesia, the retro-preset Prizvalve? system was implanted into degenerated tricuspid bioprosthesis via the femoral vein approach under the guidance of transesophageal echocardiographic and fluoroscopic guidance.ResultsTranscatheter tricuspid valve implantation was successfully performed in both high-risk patients, and tricuspid regurgitation disappeared immediately. The operation time was 1.25 h and 2.43 h, respectively. There was no serious complication in both patients, and they were discharged from the hospital 7 days after the operation.ConclusionThe clinical effect of the degenerated tricuspid bioprosthetic valve implantation with domestic balloon-expandable valve via femoral vein approach "valve-in-valve" is good. Multimodality imaging and 3D printing technology can safely and effectively guide the implementation of this innovative technique.

          Release date:2021-07-28 10:22 Export PDF Favorites Scan
        • Application of 3D printing technology in the diagnosis and treatment of valvular heart disease

          The incidence of valvular heart disease (VHD) increases with age, and its principal therapy is valve replacement. However, in recent years, the emergence of transcatheter interventions has changed the traditional therapy, making high-risk patients of surgery see dawn of hope. 3D printing technology has developed rapidly since it was applied to the medical field in 1990. Moreover, it has been widely applied in many surgical majors via refined reduction technology. However, the application of 3D printing technology in cardiovascular surgery is still in the preliminary stage, especially in the field of VHD. This article aims to review basic principles of 3D printing technology, its advantages in the therapy of VHD, and its current status of clinical application. Furthermore, this article elaborates current problems and looks forward to the future development direction.

          Release date:2022-02-15 02:09 Export PDF Favorites Scan
        • Effectiveness of endovascular repair with fenestration stent and branch stent assisted by 3D printing in treating thoracoabdominal aortic aneurysm involving visceral artery area

          ObjectiveTo evaluate the clinical value of in vitro fenestration and branch stent repair in the treatment of thoracoabdominal aortic aneurysm in visceral artery area assisted by 3D printing.MethodsThe clinical data of 7 patients with thoracoabdominal aortic aneurysm involving visceral artery at the Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University from March 2016 to May 2019 were analyzed retrospectively. There were 5 males and 2 females with an average age of 70.2±3.9 years. Among them 4 patients had near-renal abdominal aortic aneurysm, 3 had thoracic aortic aneurysm, 4 had asymptomatic aneurysm, 2 had acute symptomatic aneurysm and 1 had threatened rupture of aneurysm. According to the preoperative CT measurement and 3D printing model, fenestration technique was used with Cook Zenith thoracic aortic stents, and branch stents were sewed on the main stents in vitro, and then the stents were modified by beam diameter technique for intracavitary treatment.ResultsAll the 7 patients completed the operation successfully, and a total of 18 branch arteries were reconstructed. The success rate of surgical instrument release was 100.0%. The average operation time was 267.0±38.5 min, the average intraoperative blood loss was 361.0±87.4 mL and the average hospital stay was 16.0±4.2 d. Immediate intraoperative angiography showed that the aneurysms were isolated, and the visceral arteries were unobstructed. Till May 2019, there was no death, stent displacement, stent occlusion, ruptured aneurysm or loss of visceral artery branches. Conclusion3D printing technology can completely copy the shape of human artery, intuitively present the anatomical structure and position of each branch of the artery, so that the fenestration technique is more accurate and the treatment scheme is more optimized.

          Release date:2022-01-21 01:31 Export PDF Favorites Scan
        • Application of computer-aided design modified 3D printing model in video-assisted thoracoscopic sublobular resection for early lung cancer: A retrospective cohort study

          Objective To compare the effect of three-dimensional visual (3DV) model, three-dimensional printing (3DP) model and computer-aided design (CAD) modified 3DP model in video-assisted thoracoscopic surgery (VATS) sublobular resection. MethodsThe clinical data of patients who underwent VATS sublobular resection in the Affiliated Hospital of Hebei University from November 2021 to August 2022 were retrospectively analyzed. The patients were divided into 3 groups including a 3DV group, a 3DP group and a CAD-3DP group according to the tools used. The perioperative indexes and subjective evaluation of operators, patients and their families were compared. ResultsA total of 22 patients were included. There were 5 males and 17 females aged 32-77 (56.95±12.50) years. There were 9 patients in the 3DV group, 6 patients in the 3DP group, and 7 patients in the CAD-3DP group. There was no statistical difference in the operation time, intraoperative blood loss, drainage volume, hospital stay time or postoperative complications among the groups (P>0.05). Based on the subjective evaluations of 4 surgeons, the CAD-3DP group was better than the 3DV group in the preoperative planning efficiency (P=0.025), intuitiveness (P=0.045) and doctor-patient communication difficulty (P=0.034); the CAD-3DP group was also better than the 3DP group in the overall satisfaction (P=0.023), preoperative planning difficulty (P=0.046) and efficiency (P=0.014). Based on the subjective evaluations of patients and their families, the CAD-3DP group was better than the 3DP group in helping understand the vessel around the tumor (P=0.016), surgical procedure (P=0.020), procedure selection (P=0.029), and overall satisfaction (P=0.048); the CAD-3DP group was better than the 3DV group in helping understand the tumor size (P=0.038). ConclusionCAD-modified 3DP model has certain advantages in pre-planning, intraoperative navigation and doctor-patient communication in the VATS sublobectomy.

          Release date:2024-09-20 12:30 Export PDF Favorites Scan
        • Application of 3D printing technology in the personalized surgery of right ventricular double outlet

          ObjectiveTo evaluate the clinical value of three-dimensional (3D) printing model in accurate and minimally invasive treatment of double outlet right ventricle (DORV).MethodsFrom August 2018 to August 2019, 35 patients (22 males and 13 females) with DORV aged from 5 months to 17 years were included in the study. Their mean weight was 21.35±8.48 kg. Ten patients who received operations guided by 3D printing model were allocated to a 3D printing model group, and the other 25 patients who received operations without guidance by 3D printing model were allocated to a non-3D printing model group. Preoperative transthoracic echocardiography and CT angiography were performed to observe the location and diameter of ventricular septal defect (VSD), and to confirm the relationship between VSD and double arteries.ResultsThe McGoon index of patients in the 3D printing model group was 1.91±0.70. There was no statistical difference in the size of VSD (13.20±4.57 mm vs. 13.40±5.04 mm, t=?0.612, P=0.555), diameter of the ascending aorta (17.10±2.92 mm vs. 16.90±3.51 mm, t=0.514, P=0.619) or diameter of pulmonary trunk (12.50±5.23 mm vs. 12.90±4.63 mm, t=?1.246, P=0.244) between CT and 3D printing model measurements. The Pearson correlation coefficients were 0.982, 0.943 and 0.975, respectively. The operation time, endotracheal intubation time, ICU stay time and hospital stay time in the 3D printing model group were all shorter than those in the non-3D printing model group (P<0.05).ConclusionThe relationship between VSD and aorta and pulmonary artery can be observed from a 3D perspective by 3D printing technology, which can guide the preoperative surgical plans, assist physicians to make reasonable and effective decisions, shorten intraoperative exploration time and operation time, and decrease the surgery-related risks.

          Release date:2021-04-25 09:57 Export PDF Favorites Scan
        • Application and research progress of 3D printing magnesium-based biological scaffolds in the field of bone regeneration

          In recent years, 3D printing technology, as a new material processing technology, can precisely control the macroscopic and microstructure of biological scaffolds and has advantages that traditional manufacturing methods cannot match in the manufacture of complex bone repair scaffolds. Magnesium ion is one of the important trace elements of the human body. It participates in many physiological activities of the body and plays a very important role in maintaining the normal physiological function of the organism. In addition, magnesium ions also have the characteristics of promoting the secretion of osteogenic proteins by osteoblasts and osteogenic differentiation of mesenchymal stem cells. By combining with 3D printing technology, more and more personalized magnesium-based biological scaffolds have been produced and used in bone regeneration research in vivo and in vitro. Therefore, this article reviews the application and research progress of 3D printing magnesium-based biomaterials in the field of bone regeneration and repair.

          Release date:2023-05-23 03:05 Export PDF Favorites Scan
        • 3D Printing Technology in the Field of Thoracic and Cardiovascular Surgery

          3D printing technology has a promising prospect of medical use and clinical value, and may play an important role in the field of thoracic and cardiovascular surgery, such as preoperative diagnosis, surgical planning, surgical approach alternatives and organ replacement. This review focuses on the development of 3D printing technology in recent years and its use and prospect in the field of thoracic and cardiovascular surgery including surgical teaching and simulation, personalized prosthesis implantation, and artificial organ transplantation.

          Release date:2016-10-02 04:56 Export PDF Favorites Scan
        • Applications of 3D printing technology in the treatment of mitral valve disease

          Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.

          Release date:2019-04-29 02:51 Export PDF Favorites Scan
        • Application of three-dimensional printing technique in surgical treatment of congenital heart disease

          Objective To evaluate the application of three-dimensional printing technique in surgical treatments on complex congenital heart diseases. Methods Two patients were enrolled with complex congenital heart diseases. The computerized tomography data were used to build the 3D architecture of cardiac anomalies. The White-Jet-Process technique was used to print the models with 1∶1 ratio in size. The models were used to make the treatment strategy making, young surgeon training and operation simulation. Results The full color and hollowed-out cardiac models with 1∶1 ration in size were printed successfully. They were transected at the middle point of vertical axis, which was conveniently to explore the intracardiac anomalies. However, for patient 1, the model lost the atrial septal defect. Taking the two models as references, operation group held preoperative consultation, operation simulation, and finally, the operation plans were determined for the two patients. Both the two operation were carried out smoothly. Conclusion Although the limitations of 3D printing still exist in the application for congenital heart diseases, making the preoperative plan and operation simulation via 3D cardiac model could enhance the understanding of following operation and procedure details, which could improve the tacit cooperation among operation group members. Furthermore, operation results also could be improved potentially. Therefore, the cardiac 3D printing should be popularized in clinic in the future.

          Release date:2018-07-27 02:40 Export PDF Favorites Scan
        • Advance in research of esophageal stent

          The esophageal disease is a major clinical disease. The esophageal stent has extensive clinical applications in the treatment of esophageal diseases. However, the clinical application of esophageal stent is limited, because there are lots of complications after implantation of esophageal stent. Biodegradable esophageal stent has two advantages: biodegradability and good histocompatibility. It is expected to solve a variety of complications of esophageal stent and provide a new choice for the treatment of esophageal diseases. Standardized esophageal stents are not fully applicable to all patients. The application of 3D printing technology in the manufacture of biodegradable esophageal stent can realize the individualized treatment of esophageal stent. And meanwhile, the 3D printing technology can reduce the manufacturing cost of the stent. This review aimed to summarize and discuss the application of esophageal stent, the current research status and prospect of biodegradable esophageal stent and the prospect of 3D printing technology in degradable esophageal stent, hoping to provide evidence and perspectives for the research of biodegradable esophageal stent.

          Release date:2018-01-31 02:46 Export PDF Favorites Scan
        3 pages Previous 1 2 3 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜