The pathogenesis of diabetic retinopathy (DR) is complex. Antisense non-coding RNA (ANRIL) in the INK4 locus in long-chain non-coding RNA (lncRNA) is closely related to cell proliferation, differentiation, and individual development. It plays an important role in the dysplasia of retinal vascular endothelial cells and is a new field in the study of the pathogenesis of DR. According to the researches at present, ANRIL may plays its role in the occurrence and development of DR through the signal pathway of nuclear factor-κB and ROS/polyadenylation diphosphate ribose polymerase, and interact with p300, miR-200b, and EZH2 to regulating the expression and function of VEGF. Specific blocking ANRIL and its related pathways may become a new target in the treatment of DR.
ObjectivesTo systematically review the association between the expression level of LncRNA and clinicopathological features and prognostic value of gastric cancer.MethodsWe searched PubMed, EMbase, The Cochrane Library, Web of Science, CNKI, VIP, WanFang Data and CBM databases to collect studies on the association between LncRNA overexpression and prognosis for gastric cancer from inception to April 2017. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies, then, meta-analysis was performed by using Stata 12.0 software.ResultsA total of 21 case-control studies were included. The results of meta-analysis showed that: LncRNA overexpression patients had poor TNM stage (OR=0.29, 95%CI 0.24 to 0.35, P<0.001), deeper tumor invasion (OR=0.24, 95%CI 0.12 to 0.49,P<0.001), shorter overall survival (OS) (HR=2.52, 95%CI 2.07 to 3.06,P<0.001) and disease-free survival (DFS) (HR=2.31, 95%CI 1.75 to 3.05,P<0.001).ConclusionsLncRNA overexpression is a poor prognosis risk factor for gastric cancer patients. Due to limited quantity and quality of the included studies, more high quality studies are needed to verify above conclusions.
ObjectiveTo understand the function of long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) and summarize its relationship with gastric cancer.MethodThe published literatures on the studies of lncRNA CCAT1 function and its relationship with gastric cancer were reviewed and analyzed.ResultsThe lncRNA CCAT1 exerted the negative regulation on the genes by binding to microRNAs (miR) as a competitive endogenous RNA, mediating chromatin circulation between the c-MYC promoter and its upstream enhancer, and promoted the expression of c-MYC gene. The recent studies had found that the CCAT1 could bind to the miR-219-1 and miR-490, thereby promoting the progress of gastric cancer. The expression of lncRNA CCAT1 in the gastric cancer tissues increased, which was obviously different from that in the paracancer tissues and normal tissues. The high expression of lncRNA CCAT1 was related to the tumor size, lymphatic metastasis and TNM stage.ConclusionsThe specific mechanism, intracellular signal transduction pathway and interaction mechanism between CCAT1 and other molecules involved in the progress of gastric cancer still need to be further explored. With the in-depth study of lncRNA, especially CCAT1, it may provide a broader prospect for the diagnosis and treatment of gastric cancer as a target of CCAT1.
ObjectiveTo screen long non-coding RNAs (lncRNAs) relevant to programmed cell death (PCD) and construct a nomogram model predicting prognosis of hepatocellular carcinoma (HCC). MethodsThe HCC patients selected from The Cancer Genome Atlas (TCGA) were randomly divided into training set and validation set according to 1∶1 sampling. The lncRNAs relevant to PCD were screened by Pearson correlation analysis, and which associated with overall survival in the training set were screened by univariate Cox proportional hazards regression (abbreviation as “Cox regression”), and then multivariate Cox regression was further used to analyze the prognostic risk factors of HCC patients, and the risk score function model was constructed. According to the median risk score of HCC patients in the training set, the HCC patients in each set were assigned into a high-risk and low-risk, and then the Kaplan-Meier method was used to draw the overall survival curve, and the log-rank test was used to compare the survival between the HCC patients with high-risk and low-risk. At the same time, the area under receiver operating characteristic curve (AUC) was used to evaluate the value of the risk score function model in predicting the 1-, 3-, and 5-year overall survival rates of HCC patients in the training set, validation set, and integral set. Then the nomogram was constructed based on the risk score function model and factors validated in clinic, and its predictive ability for the prognosis of HCC patients was evaluated. ResultsA total of 374 patients with HCC were downloaded from the TCGA, of which 342 had complete clinicopathologic data, including 171 in the training set and 171 in the validation set. Finally, 8 lncRNAs genes relevant to prognosis (AC099850.3, LINC00942, AC040970.1, AC022613.1, AC009403.1, AL355974.2, AC015908.3, AC009283.1) were screened out, and the prognostic risk score function model was established as follows: prognostic risk score=exp1×β1+exp2×β2...+expi×βi (expi was the expression level of target lncRNA, βi was the coefficient of multivariate Cox regression analysis of target lncRNA). According to this prognostic risk score function model, the median risk score was 0.89 in the training set. The patients with low-risk and high-risk were 86 and 85, 86 and 85, 172 and 170 in the training set, validation set, and integral set, respectively. The overall survival curves of HCC patients with low-risk drawn by Kaplan-Meier method were better than those of the HCC patients with high-risk in the training set, validation set, and integral set (P<0.001). The AUCs of the prognostic risk score function model for predicting the 1-, 3-, and 5-year overall survival rates in the training set were 0.814, 0.768, and 0.811, respectively, in the validation set were 0.799, 0.684, and 0.748, respectively, and in the integral set were 0.807, 0.732, and 0.784, respectively. The multivariate Cox regression analysis showed that the prognostic risk score function model was a risk factor affecting the overall survival of patients with HCC [<0.89 points as a reference, RR=1.217, 95%CI (1.151, 1.286), P<0.001]. The AUC (95%CI) of the prognostic risk score function model for predicting the overall survival rate of HCC patients was 0.822 (0.796, 0.873). The AUCs of the nomogram constructed by the prognostic risk score function model in combination with clinicopathologic factors to predict the 1-, 3-, and 5-year overall survival rates were 0.843, 0.839, and 0.834. The calibration curves of the nomogram of 1-, 3-, and 5-year overall survival rates in the training set were close to ideal curve, suggesting that the predicted overall survival rate by the nomogram was more consistent with the actual overall survival rate. ConclusionThe prognostic risk score function model constructed by the lncRNAs relevant to PCD in this study may be a potential marker of prognosis of the patients with HCC, and the nomogram constructed by this model is more effective in predicting the prognosis (overall survival) of patients with HCC.
ObjectiveBy detecting the expression of the long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in myocardial tissue under different hypoxia patterns, to explore the possible mechanism of obstructive sleep apnea (OSA)-induced cardiovascular diseases.MethodsSD rats were randomly and equally divided into 4 groups namely a normal (N) group, a continuous hypoxia (CH) group, an intermittent hypoxia (IH) group and an intermittent hypoxia with hypercapnia (IHH) group, and were treated for 1, 2, and 3 weeks. The expression of MALAT1 and associated immune factors of the myocardial tissue were examined by qRT-PCR.ResultsAn elevation without significance was observed in those three hypoxia groups in contrast with N group after 1 week’s treatment. However, in 2 and 3 weeks’ groups, the mRNA expression of MALAT1 was significantly higher in IHH group than the other three groups (all P<0.01), while there was no significant difference among IH, CH or N groups despite an increasing tendency in IH and CH groups against N group were observed. Additionally, the expressions of hypoxia inducible factor-1α (P<0.05), Toll-like receptor 4 (P<0.01) and interleukin-6 (P<0.05) mRNA were also increased significantly in IHH group compared with IH, CH and IHH groups in 3 weeks’ treatment respectively, which were coordinated with the change of MALAT1 mRNA.ConclusionsThe expression of MALAT1 in myocardial tissue is elevated by intermittent hypoxia with hypercapnia, and the tendency is similar with hypoxia-induced inflammation factors. These findings indicate that MALAT1 is probably a regulatory factor of OSA induced myocardial immune injury.
Long non-coding RNA (lncRNA) Dnm3os plays a critical role in peritendinous fibrosis and pulmonary fibrosis, but its role in the process of cardiac fibrosis is still unclear. Therefore, we carried out study by using the myocardial fibrotic tissues obtained by thoracic aortic constriction (TAC) in an early study of our group, and the in vitro cardiac fibroblast activation model induced by transforming growth factor-β1 (TGF-β1). Quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and collagen gel contraction test were used to identify the changes of activation phenotype and the expression of Dnm3os in cardiac fibroblasts. Small interfering RNA was used to silence Dnm3os to explore its role in the activation of cardiac fibroblasts. The results showed that the expression of Dnm3os was increased significantly in myocardial fibrotic tissues and in the activated cardiac fibroblasts. And the activation of cardiac fibroblasts could be alleviated by Dnm3os silencing. Furthermore, the TGF-β1/Smad2/3 pathway was activated during the process of cardiac fibroblasts activation, while was inhibited after silencing Dnm3os. The results suggest that Dnm3os silencing may affect the process of cardiac fibroblast activation by inhibiting TGF-β1/Smad2/3 signal pathway. Therefore, interfering with the expression of lncRNA Dnm3os may be a potential target for the treatment of cardiac fibrosis.
ObjectiveTo summarize research progress of non-coding RNAs (ncRNAs) in acute pancreatitis (AP), so as to provide new ideas for pathogenesis, diagnosis, and therapy of AP.MethodThe literatures on studies of ncRNAs in AP in recent years were read and reviewed.ResultsThe incidence of AP was currently increasing, but its etiology was diverse, and its pathogenesis was still fully unclear. In recent years, a large number of studies had confirmed that the ncRNA played an important role in the occurrence of many cellulars and diseases processes. Through continuous exploration for potential mechanisms of AP based on ncRNA (including long non-coding RNA and microRNA) function, it was found that the specificity and sensitivity of ncRNAs in the diagnosis of AP were better than of the traditional biomarkers. Meanwhile, ncRNAs were involved in the regulation of inflammatory response through a variety of ways.ConclusionsncRNAs are involved in altering gene expression (including up-regulation or down-regulation) in the key physiological functions of AP through a variety of ways, it might provide new ideas for understanding pathogenesis of AP and help to find new therapeutic targets. A variety of ncRNAs closely related to AP are expected to become biomarkers and molecular targets for early diagnosis and treatment of AP, so as to achieve early diagnosis and targeted treatment of AP.
ObjectiveA competing endogenous RNA (ceRNA) regulatory network associated with long non-coding RNA (lncRNA) specific for lung adenocarcinoma (LUAD) was constructed based on bioinformatics methods, and the functional mechanism of actinfilament-associated protein 1-antisense RNA1 (AFAP1-AS1) in LUAD was analyzed, in order to provide a new direction for the study of LUAD therapeutic targets. MethodsThe gene chip of LUAD was downloaded from the Gene Expression Omnibus (GEO), and lncRNA and mRNA with differential expression between LUAD and normal tissues were screened using GEO2R online software, and their target genes were predicted by online databases to construct ceRNA networks and perform enrichment analysis. In cell experiments, AFAP1-AS1 was genetically knocked down and siRNA was constructed and transfected into LUAD cells A549 by cell transfection. CCK8, transwell, scratch assay and flow cytometry were used to detect the ability of cells to proliferate, invade, migrate and apoptosis. ResultsA total of 6 differentially expressed lncRNA and 494 differentially expressed mRNA were identified in the microarray of LUAD. The ceRNA network involved a total of 6 lncRNA, 22 miRNA, and 55 mRNA. Enrichment analysis revealed that mRNA was associated with cancer-related pathways. In cell assays, knockdown of AFAP1-AS1 inhibited cell proliferation, invasion, and migration, and AFAP1-AS1 promoted apoptosis. ConclusionIn this study, we construct a lncRNA-mediated ceRNA network, which may help to further investigate the mechanism of action of LUAD. In addition, through cellular experiments, AFAP1-AS1 is found to have potential as a therapeutic target for LUAD.
ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
ObjectiveTo investigate the expression level of long non-coding RNA Down’s syndrome critical region 8 (LncRNA DSCR8) in gastric cancer and its clinical significance.MethodsEighty-six patients with gastric cancer who were hospitalized in our hospital from August 2014 to August 2015 were selected as the research object. Real-time quantitative PCR (qRT-PCR) was used to detect the expression level of LncRNA DSCR8 mRNA in gastric cancer tissues and its adjacent tissues. The relationship between the expression level of LncRNA DSCR8 mRNA and clinicopathological features of gastric cancer was analyzed. Kaplan-Meier method was used to analyze the relationship between the expression of LncRNA DSCR8 mRNA and the survival rate of patients, and multivariate Cox proportional hazards regression analysis was used to analyze the prognostic factors of gastric cancer.ResultsThe expression level of LncRNA DSCR8 mRNA in gastric cancer tissues was higher than that in the paracancerous tissues (P<0.001). The expression levels of LncRNA DSCR8 mRNA in patients with poorly differentiated, TNM Ⅲ–Ⅳ and lymph node metastasis were higher than those in patients with well/moderately differentiated, TNM Ⅰ–Ⅱ and no lymph node metastasis (P<0.05). The 1, 3 and 5-year survival rate of patients with low LncRNA DSCR8 mRNA expression (97.62%, 92.86%, 83.33%, respectively) were higher than those of patients with high LncRNA DSCR8 mRNA expression (63.64%, 38.64%, 31.82%, respectively), P<0.05. LncRNA DSCR8 mRNA and TNM stage were independent risk factors of death in patients with gastric cancer (P<0.05).ConclusionsLncRNA DSCR8 is associated with the occurrence, development and prognosis of gastric cancer. It may be an important molecular marker of tumor stage and lymph node metastasis in patients with gastric cancer.