To evaluate the efficacy and the surgical procedures of submandibular sialoadenectomy by a modified retroauricular approach. Methods Between October 2008 and April 2009, 8 patients with benign submandibular gland disorders underwent removal of benign submandibular gland lesions using a retroauricular approach. There were 4 males and 4 females with an average age of 38.5 years (range, 32-54 years), including 3 pleomorphic adenoma and 5 chronic sialadenitis with sialol ithiasis. The disease duration was from 2 months to 5 years. The anterior facial vein and the facial artery were reserved only by the l igation of branching vessels in the submandibular gland. Results Submandibular sialoadenectomy were successfully performed in 8 cases. The operative time was 45-75 minutes (mean, 60 minutes). All incisions obtained heal ing by first intention. No nerve paralysis occurred, including marginal mandibular branch of the facial nerve, the l ingual nerve, and hypoglossal nerve. One patient had poor blood circulation of flap due to excessive traction during operation, but it returned normal after 24 hours without special treatment. Other flaps had good blood circulation. All patients were followed up 1-6 months (mean, 3 months). The incision scars were hidden with satisfactory appearance. Conclusion The modified retroauricular approach has some advantages such as simple operation, better cosmetic outcome, and no compl ication.
Objective To evaluate the relation of human immunodeficiency virus (HIV)-1 ribonucleic acid (RNA) loads in cerebrospinal fluid with central neurological diseases. Methods The inpatients with HIV-1 infection diagnosed by Public Health Clinical Center of Chengdu between January 1st, 2015 and March 1st, 2018 were retrospectively included. The included patients were divided into central neurological disease group and non-central neurological disease group, and high viral load group and low viral load group. The demographic data, CD4+ T lymphocyte count, routine detection of cerebrospinal fluid, HIV RNA load in cerebrospinal fluid and plasma of patients with and without central neurological diseases were observed and compared.Multiple logistic regression analysis was used to identify risk factors for central neurological diseases. Results A total of 367 patients were included. In the central neurological disease group, 210 cases (57.22%) were complicated with central neurological diseases, and cryptococcus infection was the most. Compared with the non-central neurological disease group, the increase rate of cerebrospinal fluid cell counts, cerebrospinal fluid cell counts, cerebrospinal fluid HIV RNA positivity and cerebrospinal fluid HIV RNA load were higher in the central neurological disease group (P<0.05). Logistic regression analysis showed that HIV RNA load in cerebrospinal fluid≥100 000 copies/mL and CD4+ T lymphocyte count<200 cells/mm3 were risk factors for central neurological diseases. Conclusion Cerebrospinal fluid HIV RNA load≥100 000 copies/mL is an independent risk factor for HIV/AIDS patients with central neurological diseases and clinical treatment should take this factor into consideration to reasonably optimize the selection of antiretroviral therapy.
ObjectiveTo explore the efficacy and safety of the axial load mechanical testing for removing external fixator. MethodsBetween January 2014 and August 2015, 27 patients with tibia and fibula fractures caused by trauma underwent an external fixation. Of 27 patients, 21 were male and 6 were female with the average age of 45 years (range, 19-63 years), including 7 cases of closed fracture and 20 cases of open fracture. X-ray film results showed spiral unstable fracture in 4 cases and comminuted unstable fracture in 23 cases. All patients underwent an external fixation. Bone nonunion occurred in 3 cases because of infection, and bone nonunion combined with bone defect occurred in 1 case, who received tibial osteotomy lengthening surgery. When X-ray film showed continuity high density callus formation at fracture site, axial load mechanical test was performed. If the axial load ratio of external fixator was less than 10%, the external fixator was removed. ResultsAt 21-85 weeks after external fixation (mean, 44 weeks), axial load mechanical test was performed. The results showed that the axial load ratio of external fixation was less than 10% in 26 cases, and the external fixator was removed; at 6 weeks after removal of external fixator, the patients could endure full load and return to work, without re-fracture. The axial load ratio was 14% in 1 case at 85 weeks, and the X-ray film result showed that fracture did not completely heal with angular deformity; re-fracture occurred after removing external fixator, and intramedullary fixation was used. ConclusionExternal fixator axial load mechanical testing may objectively reveal and quantitatively evaluate fracture healing, so it is safe and reliable to use for guiding the external fixator removal.
This study aims to investigate the role of calreticulin in (CRT) pressure overload induced cardiac hypertrophy. In our study, cardiac hypertrophy was induced by left ventricular pressure overload in male SD rats subjected to transverse aortic constriction (TAC) operation. Expression of gene and protein of calreticulin, markers of cardiac hypertrophy and endoplasmic reticulum stress (ERS) were measured with real-time qPCR and Western blot respectively. Meanwhile, atorvastatin (a known ERS inhibitor) and calreticulin-specific small interference ribonucleic acid (siRNA) were used to inhibit the expression of ERS and calreticulin respectively. The experimental data demonstrated that the gene and protein levels of calreticulin, hypertrophic and ERS markers were increased significantly in the heart tissues of TAC rat models after 4 weeks. Moreover, atorvastatin administration improved the cardiac function and reduced the expression of calreticulin and ERS markers in TAC rats. In addition, cultured primary neonatal rat cardiomyocytes (NCMs) were treated with norepinephrine (NE), angiotensionⅡ (AngⅡ) or isoprenaline (ISO) to induce hypertrophic phenotype and ERS. The expression of hypertrophic markers was reduced in NCMs transfected with calreticulin-siRNA. The results suggested that calreticulin might be a promising target for the treatment of cardiac hypertrophy.
OBJECTIVETo study the repairing method of facial nerve defect using nerve elongation, and the biomechanical properties of peripheral nerves. METHODS A novel device for peripheral nerve elongation was designed and manufactured. With the device, facial nerves of rabbits were expanded acutely and chronically by string-type loading. The facial nerves were studied with histological and electrophysiological examinations before and after elongation. RESULTS There were no considerable necrosis, degeneration, and infection in the facial nerves after elongation. The experimental animals took food normally and their body temperature were stable. Histological examinations showed dispersing Sunderland degree III injury and occasionally broken capillary blood vessels in the acute group, thicker nerve and fibroblasts hyperplasia between nerve bundles in the chronic group. The electromyogram(EMG) of buccal muscle and nerve conductive velocity(NCV) showed the maximal range was (18.7 +/- 2.4)% in the acute group, and (30.8 +/- 2.4)% in the chronic group. CONCLUSION It suggests that the novel nerve elongation method is feasible, and it can be used to study the nerve elongation basically and clinically.
Curcumin-loaded poly (α-isobutyl cyanoacrylate) microspheres (Cur-HP-β-CD-PiBCA) were prepared by one-step emulsification with α-isobutyl cyanoacrylate as materials, poloxamer 188 as emulsifier, and curcumin complex with hydroxypropyl-β-cyclodextrin (Cur-HP-β-CD) as drug prepared by kneading method. Effects of emulsifier and drug concentration on microspheres size and distribution, drug loading and encapsulation efficiency were investigated in detail. And the curcumin release of drug-loaded microspheres was also studied. Results showed that as the emulsifier concentration increased from 0.01% to 0.07%, particle size of the drug-loaded microspheres decreased while particle size distribution, drug loading and entrapment efficiency increased. The optimized concentration of surfactant was 0.05%. With increasing the concentration of drug from 0.03% to 0.07%, drug loading of Cur-HP-β-CD-PiBCA increased, but encapsulation efficiency decreased. Additionally, the results of drug release experiments revealed that the higher drug loading of Cur-HP-β-CD-PiBCA was, the lower cumulative release percentage was. Drug-loading of cumulative inclusions in HP-β-CD by PiBCA can improve its wettability, and increase the degree of dissolution and bioavailability.
ObjectiveTo investigate the effect of three-dimensional cultivation with dynamic compressive stimulation on promotion of cartilage growth in vitro, by constructing tissue engineered cartilage with three-dimensional porous articular cartilage extracellular matrix (ECM) scaffolds laden with rabbit chondrocytes and performing mechanical stimulation by compressive stress in bioreactor. MethodsChondrocytes of healthy adult New Zealand rabbits were isolated, and passage 2 chondrocytes were seeded onto three-dimensional porous articular cartilage ECM scaffolds for 5 days pre-cultivation, and then were divided into 2 groups:Group A continued static culture as control; group B (dynamic culture condition) underwent dynamic compressive strain stimulation (compressive strain of 15%, frequence of 1 Hz) in a bioreactor. Cell viability and distribution in scaffolds were observed; the glycosaminoglycan (GAG) content, collagen content, and total DNA content were measured after 3 weeks of culturing; and elastic modulus was evaluated by mechanical test. ResultsLaser scanning confocal microscopy indicated that cells grew well and evenly distributed in the scaffold of group B, while poor cells growth and loss of staining in the central region of the scaffolds were observed in group A. Scanning electron microscopy showed that chondrocytes possessed good adhesion, proliferation, and growth on the scaffolds of group B; while the number of chondrocytes was significantly reduced, and cells scattered in group A. Biochemical composition analysis showed that collagen, GAG, and DNA contents of cell-scaffold constructs were (675.85±27.93) μg/mg, (621.72±26.75) μg/mg, and (16.98±3.23) μg/sample in group B, and were (438.72±6.35) μg/mg, (301.63±30.51) μg/mg, and (10.18±4.39) μg/sample in group A respectively, which were significantly higher in group B than in group A (t=18.512, P=0.000;t=17.640, P=0.000;t=2.790, P=0.024). Mechanical testing indicated that the elastic modulus of group B[(0.67±0.09) MPa] was significantly higher than that of group A[(0.49±0.16) MPa] and cell-free scaffolds[(0.43±0.12) MPa] (P < 0.05). ConclusionMimetic compressive stress with three-dimensional dynamic conditions created in the bioreactor is superior to the ordinary static three-dimensional cultivation, it can provide the optimal environment for chondrocytes on the ECM scaffolds, which may be a good way to construct tissue engineered cartilage in vitro.
Heart rate is the most common index to directly monitor the level of physical stress by comparing the subject's heart rate with an appropriate "target heart rate" during exercise. However, heart rate only reveals the cardiac rhythm of the complex cardiovascular changes that take place during exercise. It is essential to get the dynamic response of the heart to exercise with various indices instead of only one single measurement. Based on the rest-workload alternating pattern, this paper screens the sensitive indices of exercise load from electrocardiogram (ECG) rhythm and waveform, including 4 time domain indices and 4 frequency domain indices of heart rate variability (HRV), 3 indices of waveform similarity and 2 indices of high frequency noise. In conclusion, RR interval (heart rate) is a reliable index for the realtime monitoring of exercise intensity, which has strong linear correlation with load intensity. The ECG waveform similarity and HRV indices are useful for the evaluation of exercise load.
Objective To evaluate the effect of polymethylmethacrylate (PMMA) augmentation on cervical stabil ity after anterior cervical interbody fusion (ACIF) before and after fatigue. Methods Twelve porcine cervical spines (C3-7) were subjected to testing angular displacement parameters, including the range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), in nondestructive flexion and extension, right/left lateral bending, and left/right rotation on Motion Analysis motion capture system and MTS-858 servo-hydraul ic testing machine. Intact cervical spines served as control group (group A); oneleveldiscectomy and fusion was performed with anterior plate fixation based on group A as group B; flexion and extension,left/right lateral bending (5 000 cycles) fatigue testing based on group B as group C; the augmentation screw channel was used based on group C as group D; and flexion and extension, left/right lateral bending fatigue testing were performed based on group D as group E. Results The ROM, NZ, and EZ in group A were significantly different from those in other groups (P lt; 0.05) at flexion/extension, left/right bending, and left/right rotation. The ROM, NZ, and EZ in group B were significantly smaller than those in group C (P lt; 0.05) in flexion/extension, left/right bending, and left/right rotation, but there was no significant difference when compared with group D (P gt; 0.05). The ROM and NZ in flexion/extension and the EZ in flexion in group B were significant smaller than those in group E (P lt; 0.05), but there was no significant difference in the other indexes (P gt; 0.05). The ROM, NZ, and EZ in group C in flexion and extension, left/right lateral bending, and left/right rotation were significantly higher than those in groups D and E (P lt; 0.05). The ROM and NZ in flexion and extension and left/right lateral bending, and the ROM in left/right rotation, and the EZ in flexion and extension, right bending, and left/right rotation in group D were significantly smaller than those in group E (P lt; 0.05), but there was no significant difference in the other indexes (P gt; 0.05). Conclusion PMMA augmentation can significantly increase the instant cervical stabil ity and provide a biomechanics basis in cervical anterior plate fixation.
Objective To assess the relationship between the change in fluid overload at 48 h after initiation of continuous renal replacement therapy (CRRT) and 28-day mortality in critically ill patients with acute kidney injury (AKI). Methods A retrospective cohort study was performed using data from the MIMIC-IV database from 2008 to 2019. Patients who received CRRT for AKI for more than 24 h within 14 d of admission to the intensive care unit were included. The exposure variable was the proportion of change of fluid overload (ΔFO%, defined as the difference between body weight normalized fluid input and output) at 48 h after CRRT initiation, and the endpoint was 28-day mortality. Generalized additive linear regression models and logistic regression models were used to determine the relationship between the exposure and endpoint. Results A total of 911 patients were included in the study, with a median (lower quartile, upper quartile) ΔFO% of ?3.27% (?6.03%, 0.01%) and a 28-day mortality of 40.1%. Generalized additive linear regression model showed that the ΔFO% at 48 h after CRRT initiation was associated with a J-shaped curve with 28-day mortality. After adjusting for other variables, as compared with the second quartile of ΔFO% group, the first quartile group [odds ratio (OR)=1.23, 95% confidence interval (CI) (0.81, 1.87), P=0.338] was not associated with higher risk of 28-day mortality, while the third quartile group [OR=1.54, 95%CI (1.01, 2.35), P=0.046] and the fourth quartile group [OR=2.05, 95%CI (1.32, 3.18), P=0.001] were significantly associated with higher risk of 28-day mortality. There was no significant relationship between ΔFO% groups and 28-day mortality in the first 24-hour after CRRT initiation (P>0.05), but there was a linear relationship between ΔFO% and 28-day mortality in the second 24-hour after CRRT initiation, the larger the ΔFO%, the higher the mortality rate [OR=1.10, 95%CI (1.04 1.16), P<0.001 for per 1% increase]. ConclusionIn critically ill patients with AKI, the ΔFO% greater than ?3.27% within 48 h after CRRT initiation is independently associated with an increased risk of 28-day mortality, and the goals of CRRT fluid management may be dynamical.