• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Three-dimensional" 135 results
        • Application of three-dimensional printing in the operation of distal tibia fracture involving epiphyseal plate injury for teenagers

          Objective To investigate the application value of three-dimensional (3-D) printing technology in the operation of distal tibia fracture involving epiphyseal plate injury for teenagers. Methods The retrospective analysis was conducted on the clinical data of 16 cases of children patients with distal tibia fracture involving epiphyseal plate injury undergoing the operation by using of 3-D printing technology between January 2014 and December 2015. There were 12 males and 4 females with an age of 9-14 years (mean, 12.8 years). The causes of injury included traffic accident injury in 9 cases, heavy pound injury in 3 cases, and sport injury in 4 cases. The time from injury to operation was 3-92 hours (mean, 25.8 hours). According to Salter-Harris typing standard, the typing for epiphyseal injury was classified as type Ⅱ in 11 cases, type Ⅲ in 4 cases, and type Ⅳ in 1 case. The thin slice CT scan on the affected limb was performed before operation, and the Mimics14.0 medical software was applied for the design and the 1∶1 fracture model was printed by the 3-D printer; the stimulation of operative reduction was made in the fracture model, and bone plate, Kirschner wire, and hollow screw with the appropriate size were chosen, then the complete operative approach and method were designed and the internal fixator regimen was chosen, then the practical operation was performed based on the preoperative design regimen. Results The operation time was 40-68 minutes (mean, 59.1 minutes); the intraoperative blood loss was 5-102 mL (mean, 35 mL); the intraoperative fluoroscopy times was 2-6 times (mean, 2.8 times). All the patiens were followed up 12-24 months (mean, 15 months). The fracture of 15 cases reached anatomic reduction, and 1 cases had no anatomic reduction with the displaced end less than 1 mm. All the fractures reached bony union with the healing time of 2-4 months (mean, 2.6 months). There was no deep vein thrombosis, premature epiphyseal closure and oblique, or uneven ankle surface occurred, and there was no complication such as osteomyelitis, varus or valgus of ankle joint, joint stiffness, traumatic arthritis. Helfet scores of ankle function were measured at 12 months after operation, the results were excellent in 15 cases and good in 1 case. The angulation of introversion and extroversion for the affected limb was (6.56±2.48)°, and the growth length was (4.44±2.31) mm, and there was no significant difference (t=0.086, P=0.932; t=0.392, P=0.697) when compared with the uninjured side [(6.50±1.51)°, (4.69±1.08) mm]. Conclusion As the assistive technology, 3-D printing technology has a certain clinical application value in improving the effectiveness of distal tibia fracture involving epiphyseal plate injury.

          Release date:2017-10-10 03:58 Export PDF Favorites Scan
        • DWI Combined with 3D-VIBE in Evaluating Metastatic Lymph Nodes Secondary to Hilar Cholangiocarcinoma

          ObjectiveTo investigate the value of diffusion weighted imaging (DWI) combined with three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) in evaluating metastatic lymph nodes secondary to hilar cholangiocarcinoma. MethodsFrom July 2009 to March 2011, DWI examination was performed in 37 patients with hilar cholangiocarcinoma, which was compared with 3D-VIBE sequences. The morphological characteristics and distribution were analyzed for metastatic and nonmetastatic lymph nodes. Signal intensity (SI) was measured on DWI images and apparent diffusion coefficient (ADC) was calculated for each lymph node. The SI of lymph nodes (SILN) and liver (SIliver) were also measured and the ratio of SI was calculated. The ADC and the ratio of SI were compared between metastatic and nonmetastatic lymph nodes. ResultsThere were fifty-nine groups of lymph nodes in 37 patients with hilar cholangiocarcinoma, fifty-one groups were revealed in both DWI and 3D-VIBE sequences, and eight groups were only demonstrated in one sequence (P=0.070). The short diameters were (1.05±0.42) cm and (0.78±0.22) cm on 3D-VIBE images for metastatic and nonmetastatic lymph nodes, respectively (P=0.030). The ADC value in metastatic lymph nodes was (1.64±0.3)×10-3 mm2/s, which was significantly lower than that in nonmetastatic lymph nodes 〔(2.28±0.79)×10-3 mm2/s〕 on DWI images (P=0.033). There were no significant differences in SILN/SIliver between metastatic and nonmetastatic lymph nodes on images of portal venous phase and 3 min delayed contrast-enhanced phase. ConclusionsDifferences of ADC and short diameter can provide valuable information to differentiate metastatic lymph nodes with nonmetastatic lymph nodes. When combined with 3D-VIBE sequence, DWI is more effective in evaluating metastatic lymph nodes secondary to hilar cholangiocarcinoma.

          Release date:2016-09-08 10:41 Export PDF Favorites Scan
        • Research progress of three-dimensional bioprinting technology in auricle repair and reconstruction

          Objective To review the research progress on the application of three-dimensional (3D) bioprinting technology in auricle repair and reconstruction. Methods The recent domestic and international research literature on 3D printing and auricle repair and reconstruction was extensively reviewed, and the concept of 3D bioprinting technology and research progress in auricle repair and reconstruction were summarized. Results The auricle possesses intricate anatomical structure and functionality, necessitating precise tissue reconstruction and morphological replication. Hence, 3D printing technology holds immense potential in auricle reconstruction. In contrast to conventional 3D printing technology, 3D bioprinting technology not only enables the simulation of auricular outer shape but also facilitates the precise distribution of cells within the scaffold during fabrication by incorporating cells into bioink. This approach mimics the composition and structure of natural tissues, thereby favoring the construction of biologically active auricular tissues and enhancing tissue repair outcomes. Conclusion 3D bioprinting technology enables the reconstruction of auricular tissues, avoiding potential complications associated with traditional autologous cartilage grafting. The primary challenge in current research lies in identifying bioinks that meet both the mechanical requirements of complex tissues and biological criteria.

          Release date:2024-06-14 09:52 Export PDF Favorites Scan
        • PILOT STUDY OF NEONATAL RAT CARDIAC MYOCYTES CULTURED FOR THREE-DIMENSIONAL MODELING IN SIMULATED MICROGRAVITY

          Objective To study three-dimensional culturing methods of neonatal rat cardiac myocytes in simulated microgravity. Methods Neonatal rat primary cardiac myocytes were separated and seeded into polylactic acid scaffolds, stirredin spinner flasks for 24 hours, and then moved into rotary cell culture system for three-dimensional culture. The growth of cardiac myocytes was observed underinverted phase contrast microscope, scanning electron microscope and transmission electron microscope, and metabolic assay was assessed by MTT assay. Results Cardiac myocytes with sustained metabolic activity attached to the polylactic acid scaffolds, extended and confluenced. Pulsations of PLAcardiac myocytes was found in some areas. Conclusion The rotary cell culture system is suitable to develop neonatal rat cardiac myocytes culturing for three-dimensional modeling.

          Release date:2016-09-01 09:33 Export PDF Favorites Scan
        • STUDY ON ACCURACY OF VIRTUAL SURGICAL PLANNING IN FREE FIBULA MANDIBULAR RECONSTRUCTION BY USING SurgiCase SOFTWARE

          Objective To evaluate the directional significance of SurgiCase software in free fibula mandibular reconstruction. Methods Between September 2010 and March 2012, 10 patients with mandibular defect underwent free fibula mandibular reconstruction. There were 7 males and 3 females, with an age range of 19-43 years (mean, 27 years). The extent of lesions was 7 cm × 5 cm to 16 cm × 8 cm. In each case, three-dimensional spiral CT scan of the maxilla, mandible, and fibula was obtained before surgery. The CT data were imported into the SurgiCase software and the virtual surgery planning was performed. After that, the mandibular rapid prototyping was made according to customized design. The reconstruction surgery was then carried out using these preoperative data. During actual surgery, the extent of mandibular defect was from 6 cm × 3 cm to 16 cm × 5 cm; the length of fibula which was used to reconstruct mandible was 6-17 cm; and the area of flap was from 6 cm × 5 cm to 16 cm × 6 cm. Results Preoperative data could not be applied because the intraoperative size of tumor was larger than preoperative design in 1 case of mandibular ameloblastoma, and the fibula was shaped according to the actual osteotomy location; operations were performed successfully according to preoperative design in the other 9 patients. The operation time was 5-7 hours (mean, 6 hours). Primary healing of incision was obtained, without early complications. Ten patients were followed up 1 year. At last follow-up, 8 patients were satisfactory with the appearance and 2 patients complained with unsatisfied wide facial pattern. The panoramic radiograghs showed good bone healing. The range of mouth opening was 2.5-3.5 cm. Conclusion SurgiCase software can provide precise data for free fibula mandibular reconstruction during surgery. It can be applied widely in clinic.

          Release date:2016-08-31 04:08 Export PDF Favorites Scan
        • RECONSTRUCTION OF MANDIBULAR BONE DEFECTS USING THREE-DIMENSIONAL SKULL MODEL AND INDIVIDUALIZED TITANIUM PROSTHETICS FROM COMPUTER ASSISTED DESIGN

          【Abstract】 Objective To evaluate the feasibility and effectiveness of reconstruction of mandibular bone defects using three-dimensional skull model and individualized titanium prosthetics from computer assisted design. Methods Between July 2002 and November 2009, 9 patients with mandibular defects accepted restorative operation using individualized bone prosthetics. Among 9 cases, 4 were male and 5 were female, aged 19-55 years. The causes of mandibulectomy were benign lesions in 8 patients and carcinoma of gingival in 1 patient. Mandibular defects exceeded midline in 2 cases, involved condylar in 4 cases, and was limited in one side without involvement of temporo-mandibular joint in 3 cases. The range of bone defects was 9.0 cm × 2.5 cm-17.0 cm × 2.5 cm. The preoperative spiral CT scan was performed and three-diamensional skull model was obtained. Titanium prosthetics of mandibular defects were designed and fabricated through multi-step procedure of reverse engineering and rapid prototyping. Titanium prosthetics were used for one-stage repair of mandibular bone defects, then two-stage implant denture was performed after 6 months. Results The individualized titanium prosthetics were inserted smoothly with one-stage operative time of 10-23 minutes. All the cases achieved incision healing by first intention and the oblique mandibular movement was corrected. They all got satisfactory face, had satisfactory contour and good occlusion. In two-stage operation, no loosening of the implants was observed and the abutments were in good position with corresponding teeth which were designed ideally before operation. All cases got satisfactory results after 1-9 years of follow-up. At last follow-up, X-ray examinations showed no loosening of implants with symmetry contour. Conclusion Computer assisted design and three-dimensional skull model techniques could accomplish the design and manufacture of individualized prosthetic for the repair of mandibular bone defects.

          Release date:2016-08-31 04:21 Export PDF Favorites Scan
        • THREE-DIMENSIONAL CULTURED ADIPOSE-DERIVED STEM CELLS BASED ON MICROBIAL TRANSGLUTAMINASE ENZYME CROSSLINKED GELATIN HYDROGEL

          ObjectiveTo study the growth of adipose-derived stem cells (ADSCs) planted in three-dimensional (3D) materials, a 3D cultured ADSCs system based on microbial transglutaminase (mTG) enzyme crosslinked gelatin hydrogel was constructed. MethodsADSCs were isolated from the subcutaneous adipose tissue of a Sprague Dawley rat by collagenase digestion and centrifugation, and were cultured for passage. The mTG enzyme crosslinked gelatin hydrogel was firstly synthesized by mixing gelatin and mTG, and then the ADSCs were encapsulated in situ (2D environment) and cultured in the 3D materials (3D environment). The morphology and adhesion of cells were observed by inverted phase contrast microscope. In addition, HE staining and Masson staining were carried out to observe the distribution of cells in the material. Living and death situation of ADSCs in the materials was observed by fluorescence microscope and laser scanning confocal microscopy. Scanning electron microscopy was used to observe the adhesion of ADSCs on hydrogel surface. Alamar-Blue method was used to detect the proliferation of ADSCs in the hydrogel. Moreover, the results were compared between the cells cultured in 2D environment and those in 3D environment. ResultsThe result of 2D culture showed that ADSCs grew well on the hydrogel surface with normal functioning and had good adhesion. The results of 3D culture showed that ADSCs grew well in 3D cultured mTG enzyme crosslinked gelatin hydrogel, and presented 3D shape. Cells obviously extended in all directions. The number of apoptotic cells was very small. The cells of 3D culture at each time point was significantly less than that of the conventional culture cells, difference was statistically significant (P < 0.05). But after 8 days culture, the proliferation of the cells cultured in the mTG enzyme crosslinked gelatin hydrogel increased more quickly. ConclusionADSCs can grow well with good adhesion and show high viability in 3D culture system constructed by mTG enzyme crosslinked gelatin hydrogel.

          Release date:2016-12-12 09:20 Export PDF Favorites Scan
        • Application of Digital Technology Assisted Minimally Invasive Surgery in Diagnosis and Treatment of Hepatolithiasis

          ObjectiveTo study the clinical value of digital technology assisted minimally invasive surgery in diagnosis and treatment of hepatolithiasis. MethodsThe image data of 64-slice spiral CT scanning were obtained from five patients of complicated hepatolithiasis and introduced into medical image three-dimensional visualization system (MI-3DVS) for three-dimensional reconstruction. On the basis of the data of three-dimensional reconstruction, minimally invasive surgical planning of preoperation was made to obtain reasonable hepatectomy and cholangiojejunostomy, and then preoperative emulational surgery was carried out to minimize the extent of tissue damage and provide guidance to actual operation. ResultsLiver, biliary system, stone, blood vessel, and epigastric visceral organ were successfully reconstructed by MI-3DVS, which showed clearly size, number, shape, and space distribution of stone, and location, degree, length, and space distribution of biliary stricture, and anatomical relationship of ducts and vessels. The results of three-dimensional reconstruction were successfully confirmed by actual operation, which was in accordance with emulational surgery. There was no operative complication. No retained stone in internal and external bile duct was found by Ttube or other supporting tube cholangiography on one month after operation. ConclusionThree-dimensional digitizing reconstruction and individual emulational surgery have important significance in diagnosis and treatment of complicated hepatolithiasis by minimally invasive technique.

          Release date:2016-09-08 10:41 Export PDF Favorites Scan
        • Progress on three-dimensional cell culture technology and their application

          Three-dimensional (3D) cell culture model is a system that co-culture carriers with 3D structural materials and different types of cells in vitro to simulate the microenvironment in vivo. This novel cell culture model has been proved to be close to the natural system in vivo. In the process of cell attachment, migration, mitosis and apoptosis, it could produce biological reactions different from that of monolayer cell culture. Therefore, it can be used as an ideal model to evaluate the dynamic pharmacological effects of active substances and the metastasis process of cancer cells. This paper compared and analyzed the different characteristics of cell growth and development under two-dimensional (2D) and 3D model culture and introduced the establishment method of 3D cell model. The application progress of 3D cell culture technology in tumor model and intestinal absorption model was summarized. Finally, the application prospect of 3D cell model in the evaluation and screening of active substance was revealed. This review is expected to provide reference for the development and application of new 3D cell culture models.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        • PRELIMINARY APPLICATION OF THREE-DIMENSIONAL PRINTING PERSONALIZED EXTERNAL FIXATOR IN SERIOUS TIBIOFIBULA FRACTURES

          ObjectiveTo explore a new method of treating serious tibiofibula comminuted fracture by using three-dimensional (3-D) printing personalized external fixator. MethodsIn April 2015, a male patient (aged 18 years with a height of 171 cm and a weight of 67 kg) with left tibiofibula comminuted fracture was included in the study. Computer-assisted reduction technique combined with 3-D printing was used to develop a customised personalized external fixator for fracture reduction. The effectiveness was observed. ResultsThe operation time was about 10 minutes without fluoroscopy, and successful reduction was obtained. The patient had equal limb length after operation. X-ray films showed that the posterior angulation of distal fracture was corrected 37°, and the eversion angle was corrected 4°. The tibial fractures had good paraposition or alignment, and the lower limb force line was corrected completely. No new fracture displacement occurred. The clinical healing time of fracture was 3.5 months and the bone union was achieved after 8 months. The function of affected limb recovered well after operation. ConclusionA personalized external fixator for serious tibiofibula comminuted fracture reduction made by 3-D printing technique has the merits of easy manipulation, high individuation, accurate reduction, stable fixation, and no need of fluoroscopy.

          Release date: Export PDF Favorites Scan
        14 pages Previous 1 2 3 ... 14 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜