Objective To observe the effects of exogenous pulmonary surfactant (PS) on ventilation-induced lung injury (VILI) in rats, and to investigate its possible mechanisms. Methods A total of 40 Wistar rats were divided into 4 groups with randomized blocks method: control group, high tidal volume (HV) group, VILI group, and PS group, with 10 rats in each group. The control group was subjected to identical surgical procedure but was never ventilated. After 30 min of mechanical ventilation (MV) with Vt 45 ml/kg, the rats in HV group were killed immediately; rats in the VILI group were continually ventilated for up to 150 min with Vt 16 ml/kg; in the PS group, 100 mg/kg of PS administered intratracheally and with the same settings as VILI group. Mean artery pressure (MAP), blood gas analysis, lung wet to dry weight ratios (W/D), thorax-lung compliance, and cell counts in bronchoalveolar lavage fluid (BALF) were determined. Nuclear factor-κB(NF-κB) activity in lungs was measured by enzyme-linked immunosorbent assay (ELISA), interleukin-8(IL-8) in serum and BALF was determined by radioimmunoassay (RIA). Pathological examination of the lung was performed. Results Injurious ventilation significantly decreased MAP and PaO2/FiO2, but increased NF-κB activity and W/D. MAP and PaO2/FiO2 improved, but NF-κB activity, IL-8 in serum and BALF, and cell counts in BALF reduced significantly in PS group compared with those in VILI group. Histological studies showed reduced pulmonary edema and atelectasis in the PS group. Conclusion PS administered intratracheally can suppress the increased activity of NF-κB induced by VILI, exogenous PS can be used to treat VILI.
ObjectiveTo observe the effect of rosiglitazone on cognitive function, serum high sensitive C reactive protein (hs-CRP) and expression of nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in hippocampal tissues of senile diabetic rats. MethodsThirty aged Wistar rats (20-22 months) were randomly divided into normal control group (n=6), diabetic model group (n=12), and rosiglitazone treatment group (n=12). Streptozotocin-induced diabetic rat model was established. In the rosiglitazone treatment group, the rats were treated with rosiglitazone 4mg/kg/d for 8 weeks. The cognitive function of rats was evaluated with the Morris water maze test. Serum hs-CRP was detected by ELISA. The expression of NF-κB in hippocampal tissues was detected by western blot and IL-6 and TNF-α by Real-time PCR. ResultsThe Morris water maze test showed that escape latency was longer in the rosiglitazone treatment group and the diabetic model group than that in the control group (P<0. 05). Compared with the diabetic model group, the rosiglitazone treatment group showed a significant decrease in the average time of escape latencies (P<0.05), and an increased percentage of time spent in the central area and the more times navigating the original platform position (P<0.05). Serum hs-CRP and the expression of NF-κB, IL-6 and TNF-α in the rosiglitazone treatment group and the diabetic model group was significantly higher than those in the control group (P<0.01). Compared with the diabetic model group, serum hs-CRP and the expression of NF-κB, IL-6 and TNF-α in the rosiglitazone treatment group was decreased (P<0.05). ConclusionCognitive impairment in senile diabetic rats is associated with serum hs-CRP. The cognitive function can be improved with rosiglitazone treatment. The protective mechanisms may be related to the decrease of serum hs-CRP, inhibition of NF-κB signal and down-regulation of the expression of IL-6 and TNF-α in hippocampal tissues.
Objective To explore the effect on apoptotic genes of pancreatic adenocarcinoma cell BxPC-3 from subcutaneous transplantation tumor in nude mice induced by 5-FU and sulfasalazine (SZ).Methods Changes of apoptosis-related genes 〔bcl-2, cyclinD1, Bax and NF-κB (p65)〕 in subcutaneous transplantation tumor treated by 5-FU, SZ alone or both at the levels of mRNA and protein were measured by RT-PCR and Western blot. Results NF-κB (p65) at mRNA relative content and protein expression in subcutaneously heterotopic transplantation tumor treated by 5-FU (7.5, 15 mg/kg), SZ (10, 20 mg/kg) alone or both showed significant difference, except for two subsets in SZ group, respectively, in comparison with each control group (P<0.01). Meanwhile bcl-2 and cyclinD1 at the levels of mRNA and protein, and Bax protein level were significantly different from each control group (P<0.01). The above-mentioned indexes were show obvious interaction of both by multiple factor analysis of variance. Conclusion Up-regulated level of Bax, down-regulated levels of bcl-2, cyclinD1 and NF-κB (p65) might be one of apoptotic mechanisms that SZ synergistically enhanced apoptotic effect on pancreatic adenocarcinoma cell BxPC-3 of subcutaneous transplantation tumor in nude mice induced by 5-FU.
Objective To observe the effect of epidermal growth factor (EGF) on the proliferation, adhesion, invasiveness and the activation of nuclear factor-κB (NF-κB), matrix metalloproteinases (MMPs) expression and explore related mechanisms in pancreatic cancer cells. Methods Cell invasion assay, proliferation assay and adhesion assay were used to examine the proliferation, adhesion and invasiveness of pancreatic cancer cells, respectively. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA), and MMPs protein and mRNA expressions were investigated by gelatin zymography, Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR). Results EGF increased the invasiveness of pancreatic cancer cell in a dose-dependent manner (P<0.05), but did not affect cell proliferation or adhesion. The expressions of MMP-9 mRNA and protein significantly increased after induction by EGF and were highest when EGF concentration was 50 ng/ml, while there was no effect on the expressions of MMP-2 mRNA and protein. Furthermore, NF-κB activity increased with increased concentration of EGF in a concentration-dependent manner (P<0.05). In addition, NF-κB activity and the expressions of MMP-9 mRNA and protein by pretreatment with both pyrrolidine dithiocarbamate (PDTC) and EGF decreased when compared that by pretreatment with EGF alone. The invasiveness of pancreatic cancer cell by pretreatment with both PDTC and EGF decreased when compared that by pretreatment with EGF alone and nothing (P<0.05).Conclusion The findings indicate that the NF-κB-mediated MMP-9 induction is essential for EGF-induced invasiveness in pancreatic cancer cells, which can be inhibited by PDTC.
【Abstract】 Objective To study the effects of ischemic preconditioning (IP) on the activity of nuclear factor-κB (NF-κB) and the expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1) during early reperfusion following liver transplantation in rats. Methods The models of rat orthotopic liver transplantation were established. The donor livers were stored for 2 hours in Ringers solution at 4 ℃ before transplantation. All rats were randomly divided into sham operation group (SO group), control group and IP group. IP group was achieved by clamping the portal vein and hepatic artery of donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The activity of NF-κB and expressions of TNF-α and ICAM-1 at 1 h, 2 h, 4 h and 6 h after reperfusion were measured. Serum ALT, LDH were also determined. Results The liver function of recipients with IP were significantly improved. Compared with SO group, the graft NF-κB activity increased after transplantation in control group and IP group (P<0.05), while compared with control group that was significantly attenuated at 1 h and 2 h in IP group. Similarly, hepatic levels of TNF-α and ICAM-1 were significantly elevated in control group and were reduced in IP group. Conclusion IP might down-regulated TNF-α and ICAM-1 expression in the grafts after orthotopic liver transplantation through depressed NF-κB activation, and attenuate neutrophil infiltration in the grafts after reperfusion.
ObjectiveTo explore the mechanism of lung injury in Sprague-Dawley (SD) rats induced by acute organic phosphorus pesticides (AOPP) by observing the changes of the blood serum nuclear factor (NF)-κB consistence, NF-κB level of lung tissue and lung coefficient. MethodNinety-six healthy male SD rats (six weeks old) were randomly divided into group A (control, n=48) and group B (poison, n=48). The rats of group B were given omethoate by gavage (45 mg/kg), and the rats of group A accepted normal saline. Then the rats were killed at designated observing points (30 minutes; 3, 6, 12, 24, and 48 hours), and the lung coefficient, blood serum NF-κB consistence and NF-κB level of lung tissue were measured. At the same time, we observed the pathological changes of the rats' lung tissue. ResultsCompared with group A, blood serum NF-κB consistence, NF-κB level of lung tissue and the level of lung coefficient in group B were significantly higher (P<0.01). The lung tissues of group A were normal at each time point, but in group B, the lung pathological changes gradually appeared 30 minutes later with pulmonary interstitial engorging, alveolar septum widening and some alveolus being full of red blood cells, and this situation reached its peak at hour 12. Then it gradually mitigated from 24 to 48 hours. ConclusionThere are significant increases in blood serum NF-κB consistence and NF-κB level in lung tissues in rats with lung injury induced by omethoate poisoning. The NF-κB may play a role in the process of lung injury induced by organophosphorus pesticide.
ObjectiveTo investigate the role and mechanism of P-selectin glycoprotein ligand-1 (PSGL-1) in hydrochloric acid-induced acute lung injury (ALI) in mice.MethodsWild-type mice (WT) and PSGL-1 knockout mice (PSGL-1 -/-) were randomly subjected to normal saline (NS) or hydrochloric acid (HCl) challenged group. The mice were intratracheally instilled with NS or HCl (1 μl/g weight) into the left lung with a catheter. After 2 hours, respiratory function index enhanced pause (Penh), PaO2 and PaO2 were analyzed. The wet to dry weight ratio (W/D) of the left lung and total protein concentration in bronchoalveolar lavage fluid (BALF) were measured. The number of leukocytes in BALF was counted too. Targeted lung tissue was processed for further HE or immunohistochemistry staining. Meanwhile, the expressions of interleukin-6 (IL-6), IL-1β, nuclear factor-κB (NF-κB), IκBa and p-IκBa in lung tissue were measured.ResultsThe Penh (4.77±1.22 vs. 5.80±0.84) and PaCO2 [(63.7±3.9) mm Hg vs. (74.4±7.4) mm Hg] in the PSGL-1 knockout mice were significantly lower than those in the WT mice after HCl stimulation (P<0.05), while the PaO2 was higher than that in the WT mice [(81.0±7.1) mm Hg vs. (62.0±8.9) mm Hg, P<0.05)]. The lung W/D ratio (4.86±0.15 vs. 5.22±0.20), protein concentration [(3.71±0.64) μg/μl vs. (4.74±0.98) μg/μl] and total leukocyte count [(13.00±2.18) ×107/L vs. (49.42±3.35) ×107/L] in BALF were significantly lower in the PSGL-1 knockout mice challenged with HCl than those in the WT mice (P<0.05). Besides, the protein expressions of IL-6, IL-1β, p65 and p-IκBa in the PSGL-1 knockout mice were lower than those in the WT mice after HCl instillation, while the IκBa expression was higher than that in the WT mice (P<0.05). More numbers of neutrophils and macrophages were found in the lung of the WT mice than the PSGL-1 knockout mice challenged with HCl. However, the differences of above values between the WT mice and the PSGL-1 knockout mice instilled with NS were not found, all of which were significantly lower than the correspongding HCl group except for IκBa (P<0.05).ConclusionPSGL-1 may play important roles in the development of HCl-induced ALI via the NF-κB signaling pathway and inflammation.
【 Abstract 】 Objective To investigate the protective effect of peroxisome proliferator-activated receptor γ (PPAR γ ) activator 15-deoxyprostaglandin J2 (15d-PGJ2) in rat hepatic ischemia-reperfusion injury and its mechanism. Methods The models of 70% warm ischemia-reperfusion injury were established in SD rats, rats were randomly divided into 4 groups: sham operation group, ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group. After reperfusion, serum AST and ALT levels were determined; the liver tissues were removed for measurement of activity of NF-κB and myeloperoxidase (MPO), TNF-α content and expression of ICAM-1. Results Compared with sham operation group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in ischemia-reperfusion group, 15d-PGJ2 group and 15d-PGJ2+GW9662 group were greatly improved (P < 0.05). Compared with ischemia-reperfusion group, the serum levels of ALT and AST and the activities of MPO and NF- κ B, TNF- α content and expression of ICAM-1 in 15d-PGJ2 group were significantly decreased (P < 0.05). Compared with 15d-PGJ2 group, the serum levels of ALT and AST, and the activities of MPO and NF- κ B, TNF- α content and the expression of ICAM-1 in 15d-PGJ2+GW9662 group were obviously increased (P < 0.05). Conclusion PPAR γ activator 15d-PGJ2 could protect against ischemia-reperfusion injury in rats, with its possible mechanism of inhibiting NF-κB activation and down-regulating TNF-α content and ICAM-1 expression in a PPARγ dependent fashion.
Objective To investigate the expressions of ubiquitin-proteasome markers,including E2-14K,MAFbx,MuRF-1,and nuclear factor-κB(NF- κB) p50,in diaphragm of COPD rats,and their relationship with IL-17 level in diaphragm and serum in order to elucidate the potential mechanism of diaphragm atrophy. Methods Thirty healthy adult male SD rats were randomly divided into a model group (n=18) and a normal control group (n=12). The COPD rat model was established by instillation of lipopolysaccharide (LPS) and exposure to cigarette smoke for 28 days. The protein levels of E2-14K,MAFbx,MuRF-1,and NF-κB p50 in diaphragm were measured by Western blot. The concentration of IL-17 in serum and diaphragm was measured by ELISA. Results Western blot showed that the protein expressions of E2-14K,MAFbx,MuRF-1,and NF-κB p50 in diaphragm increased significantly in the COPD model group compared with the normal control group (0.96±0.12 vs. 0.53±0.09,0.99±0.10 vs. 0.53±0.08,0.95±0.08 vs. 0.51±0.16,1.11±0.10 vs. 0.64±0.50,respectively,Plt;0.01). The IL-17 level in serum and diaphragm was significantly higher in the COPD group than the control group. The expression of NF-κB p50 was positively correlated with E2-14K,MAFbx,and MuRF-1 expressions (r=0.82,0.92,0.86,respectively,Plt;0.01). Both in serum and diaphragm,IL-17 level was positively correlated with the percentage of neutrophils,levels of NF-κB p50,E2-14K,MAFbx,and MuRF-1 expressions(all Plt;0.01). The IL-17 levels in serum and diaphragm were also positively correlated each other (r=0.84,Plt;0.01). Conclusions The results show that the ubiquitin-proteasom pathway,the NF-κB pathway and IL-17 are up-regulated in diaphragm of COPD rats .These alterations may contribute to diaphragm atrophy in COPD.
Objective To investigate the transduction pathway of TREM-1 during endotoxininduced acute lung injury ( ALI) in mice through the specific activating or blocking TREM-1.Methods 40 mice were randomly divided into a saline control group, an ALI group, an antibody group, and a LP17 group ( 3.5 mg/kg) . All mice except the control group were intraperitoneally injected with lipopolysaccharide ( LPS) to establish mouse model of ALI. Two hours after LPS injection, anti-TREM-1mAb ( 250 μg/kg) was intraperitoneally injected in the antibody group to activation TREM-1, and synthetic peptide LP17 was injected via tail vein in the LP17 group to blocking TREM-1. After 6,12,24, 48 hours, 3 mice in each group were sacrificed for sampling. The expression of NF-κB in lung tissue was determined by immunohistochemistry. The levels of TNF-α, IL-10, TREM-1, and soluble TREM-1 ( sTREM-1) in lung tissue and serumwere measured by ELISA. Pathology changes of lung were observed under light microscope, and Smith’s score of pathology was compared. Results Administration of anti-TREM-1mAb after ALI modeling significantly increased the NF-κB expression in lung tissue at 48h, resulting in a large number of pro-inflammatory cytokines releasing in the lung tissue and serumand lung pathology Smith score increasing. Administration of LP17 after modeling significantly down-regulated the expressions of NF-κB and pro-inflammatory cytokines, while led to a slight increase of anti-inflammatory cytokines and a decline of lung pathology Smith’s score.Conclusion TREM-1 may involve in inflammatory response by promoting the generation of inflammatory factors via NF-κB pathway, thus lead to lung pathological changes in ALI.