ObjectiveTo prepare human acellular adipose tissue matrix and to evaluate the cellular compatibility so as to explore a suitable bio-derived scaffold for adipose tissue engineering. MethodsThe adipose tissue was harvested from abdominal skin graft of breast cancer patients undergoing radical mastectomy or modified radical mastectomy, and then was treated with a series of decellularization processes including repeated freeze-thaw, enzyme digestion, and organic solvent extraction. The matrix was examined by histology, immunohistochemistry, DAPI fluorescence staining, and scanning electron microscopy to observe the the removal of cells and to analyze its composition of collagen type IV, laminin, and fibronectin, and microstructure. The 3rd passage human adipose-derived stem cells (hADSCs) were co-cultured with acellular adipose tissue matrix and different concentrations of extracted liquid (100%, 75%, 50%, and 25%). The cytotoxic effects of the matrix were tested by MTT. The biocompatibility of the matrix was detected by live/dead staining and scanning electron microscopy observation. ResultsThe acellular adipose tissue matrix basically maintains intrinsical morphology. The matrix after acellular treatment consisted of extracellular matrix without any cell components, but there were abundant collagen type I; neither DNA nor lipid residual was detected. Moreover, the collagen was the main component of the matrix which was rich in laminin and fibronectin. At 1, 3, and 5 days after co-cultured with hADSCs, the cytotoxic effect of matrix was grade 0-1. The matrix displayed good cell compatibility and proliferation. ConclusionThe acellular adipose tissue matrix prepared by repeated freeze-thaw, enzyme digestion, and organic solvent extraction method remains abundant extracellular matrix and has good cellular compatibility, so it is expected to be an ideal bio-derived scaffold for adipose tissue engineering.
ObjectiveTo summarize the isolation procedures, molecular characterization, and differentiation and vascularization capacity of adipose-derived stem cells (ADSCs), in order to discuss the potential value of ADSCs for the repairment and regeneration of adipose tissues. MethodsRelated literatures about ADSCs were retrieved to summarize the potential value of ADSCs for the repairment and regeneration of adipose tissues. ResultsAs mesenchymal stem cells, ADSCs was rich in human adipose tissues. ADSCs possessed the potential to differentiate toward a variety of cell lineages, such as adipogenic, chondrogenic, osteogenic, cardiomyogenic, myogenic, and angiogenic. Besides, its capacity of adipogenic differentiation could maintain several passages. The most importantly, ADSCs could secrete significant amounts of angiogenesis-related cytokines, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), which increased the angiogenesis of adipose tissue. ConclusionsADSCs play a key role in adipose tissue engineering, autologous adipose tissue grafting, and soft tissue wound repairing, which have important application prospect for breast reconstruction.
ObjectiveTo study the feasibility of human adipose-derived stem cells (hADSCs) combined with small intestinal submucosa powder (SISP)/chitosan chloride (CSCl)-β-glycerol phosphate disodium (GP)-hydroxyethyl cellulose (HEC) for adipose tissue engineering. MethodshADSCs were isolated from human breast fat with collagenase type I digestion, and the third passage hADSCs were mixed with SISP/CSCl-GP-HEC at a density of 1×106 cells/mL. Twenty-four healthy female nude mice of 5 weeks old were randomly divided into experimental group (n=12) and control group (n=12), and the mice were subcutaneously injected with 1 mL hADSCs+SISP/CSCl-GP-HEC or SISP/CSCl-GP-HEC respectively at the neck. The degradation rate was evaluated by implant volume measurement at 0, 1, 2, 4, and 8 weeks. Three mice were euthanized at 1, 2, 4, and 8 weeks respectively for general, histological, and immunohistochemical observations. The ability of adipogenesis (Oil O staining), angiopoiesis (CD31), and localized the hADSCs (immunostaining for human Vimentin) were identified. ResultsThe volume of implants of both groups decreased with time, but it was greater in experimental group than the control group, showing significant difference at 8 weeks (t=3.348, P=0.029). The general observation showed that the border of implants was clear with no adhesion at each time point;fat-liked new tissues were observed with capillaries on the surface at 8 weeks in 2 groups. The histological examinations showed that the structure of implants got compact gradually after injection, and SISP gradually degraded with slower degradation speed in experimental group;adipose tissue began to form, and some mature adipose tissue was observed at 8 weeks in the experimental group. The Oil O staining positive area of experimental group was greater than that of the control group at each time point, showing significant difference at 8 weeks (t=3.411, P=0.027). Immunohistochemical staining for Vemintin showed that hADSCs could survive at each time point in the experimental group;angiogenesis was most remarkable at 2 weeks, showing no significant differences in CD31 possitive area between 2 groups (P>0.05), but angiogenesis was more homogeneous in experimental group. ConclusionSISP/CSCl-GP-HEC can use as scaffolds for hADSCs to reconstruct tissue engineered adipose.
Objective To review the latest progress in the major biological properties of adipose-derived stem cells (ADSCs) and ADSCs assisted autologous lipotransfer in breast repair and reconstruction. Methods Recent literature about ADSCs assisted autologous lipotransfer in breast repair and reconstruction was reviewed. Results ADSCs have multipotential differentiation capacity, and they could promote angiogenesis and regulate immune reactions. ADSCs assisted autologous lipotransfer can obtain satisfactory effectiveness in breast repair and reconstruction with few complications, but more studies are needed to confirm the long-term safety. Conclusion ADSCs assisted autologous lipotransfer has good effectiveness in breast repaired and reconstruction. But further clinical trials are needed to confirm the long-term safety.
Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.
To study the feasibil ity of human adipose derived stem cells (ADSCs) in monolayer culture induced into smooth muscle cells in vitro as seeding cells in vascular tissue engineering. Methods The mononuclear cells in human adipose were separated by collagenase treatment and seeded on culture dishes with the density of 5 × 105/cm2. Cellswere cultured in M-199 plus 10% FBS. When reaching confluence, the cells were subcultured by 0.1% trypsin and 0.02%EDTA treatment, PDGF-BB (50 ng/mL) and TGF-β1 (5 ng/mL) were added at the passage 1 to enhance the smooth muscle cells’ phenotype. Cells were cultured under the inducing medium for 14 days. The morphology of induced cells was observed under the microscope. Cellular immunofluorescence and RT-PCR were used to determine the expression of smooth muscle cell markers of the post-induced cells. Flow cytometry (FACs) was used to examine the positive rate of induced team. Results Cocultured in M-199 media including TGF-β1 and PDGF-BB, the prol iferating capabil ity of the induced cells was significantly downregulated compared with the uninduced cells(P lt; 0.01). The induced cells exhibited “Hill and Valley” morphology, while the uninduced cells were similar to ADSCs of P0 which had the fibroblast-l ike morphology. The results of immunofluorescence indicated that the induced cells expressed smooth muscle (SM) cell- specific markers including α-smooth muscle actin (α-SMA), SM-myosin heavy chain (SM-MHC) and Calponin. The results of RT-PCR revealed that the induced cells also expressed α-SMA, SM-MHC, Calponin and SM-22α.The positive rates of α-SMA, SM-MHC and Calponin in FACs were 3.26% ± 1.31%, 3.55% ± 1.6% and 4.02% ± 1.81%, respectively, before the cells were induced. However, 14 days after the cell induction, the positive rates were 48.13% ± 8.31%, 45.33% ± 10.68% and 39.13% ± 9.42%, respectively. The positive rates in induced cells were remarkably higher than those in uninduced cells(P lt; 0.01). Conclusion The human ADSCs can be induced to express vascular smooth muscle markers, and they are a new potential source of vascular tissue engineering.
ObjectiveTo study the inducting differentiation effect of the sciatic nerve extracts on rabbit adipose-derived stem cells (ADSCs) in vitro. MethodsThe ADSCs were isolated from 2 healthy 4-month-old New Zealand rabbits (weighing, 2.0-2.5 kg) and cultured to passage 3, which were pretreated with 10 ng/mL basic fibroblast growth factor (bFGF) for 24 hours before induction. Then the induction media containing the extracts of normal sciatic nerve (group B) and injured sciatic nerve at 3, 7, and 14 days (group C, group D, and group E) were used, and D-Hank was used in group A as blank control group. The morphological changes of the cells were observed. At 7 days of induction, the gene expressions of neuron-specific enolase (NSE), nestin (NES), and S-100 were detected by real-time fluorescent quantitative PCR. The S-100 protein expression was tested by immunocytochemical staining. ResultsAt 4 days after induction, some ADSCs of groups C, D, and E showed the morphology of Schwann-like cells or neuron-like cells, the change of group D was more obvious; and the ADSCs of group A and B had no obvious change, which were still spindle. The S-100 immunocytochemical staining showed positive expression in groups C, D, and E (more obvious in group D) and negative expression in groups A and B. The gene expression of S-100 displayed time-dependent increases in groups C and D, which was significantly higher than that of groups A, B, and E (P<0.05), but no significant difference was found between groups C and D (P>0.05). The gene expression of NSE showed the same tendency to S-100, which reached the peak in group D; the gene expression of NSE in groups D and E was significantly higher than that of groups A, B, and C (P<0.05), and groups D and E showed significant difference (P<0.05). However, the gene expression of Nestin showed no significant difference among different groups (P>0.05). ConclusionThe ADSCs can be induced to differentiate into Schwann-like cells or neuron-like cells with sciatic nerve extracts; and the early stage (3-7 days) after injury is the best time for stem cell transplantation.
ObjectiveTo investigate the differentiation of rat adipose-derived stem cells (ADSCs) into neuronlike cells by indirect co-culture with Schwann cells (SCs) in vitro so as to look for the ideal seed cells for tissue engineering. MethodsSCs were isolated from sciatic nerves of 1-2 days old Sprague-Dawley rats with enzymatic digestion method. Immunofluorescence staining was used to identify SCs with the marker S-100. ADSCs were isolated from the epididymal fat pads of adult male Sprague-Dawley rats by means of differential attachment. And the cell phenotypes (CD29, CD34, CD45, CD73, CD90, and CD105) of ADSCs at passage 3 were determined by flow cytometry analysis. Primary SCs and ADSCs at passage 3 were co-cultured at a ratio of 2:1 in Transwell culture dishes (experimental group), and ADSCs cultured alone served as control group. Immunofluorescence and flow cytometry were adopted to investigate the neural differentiation of ADSCs at 14 days. The expression differences for neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP2), neuronal nuclei protein (NeuN), and glial fibrillary acidic protein (GFAP) were detected, and the percentage of positive cells was calculated. ResultsADSCs were successfully extracted and can passage in a considerable large amount. Flow cytometry analysis showed that ADSCs at passage 3 were positive for CD29, CD90, CD73, and CD105 expression, but negative for CD34 and CD45 expression. The ADSCs of the experimental group showed contraction of nucleus, increasing of soma refraction, and several long and thick protrusions of cell body. The cell shape had no obvious change in the control group. Both immunofluorescence and flow cytometry analysis results showed the expressions of MAP2, NSE, NeuN, and GFAP at 14 days after co-cultured with SCs, and the positive cell ratios were significantly higher than those in the control group (P<0.01). ConclusionCo-culture with SCs not only can promote the survival regeneration of ADSCs, but also can induce the differentiation of ADSCs into neuron-like cells.
Objective To investigate the differentiation of theadipose-derived adult stem cell (ADASC) induced by the recombinant adenovirus’s containing fibers derived from B-group serotype 35 (rAd5/F35)mediated human bone morphogenetic protein 7 (hBMP-7) gene and to explore a new cell sourcefor the bone tissue engineering. Methods The hBMP-7 gene wasamplified with the pcDNA1.1/AMP-hBMP-7 plasmid as a formwork. After the purification, the gene fragment was cloned into the pDC316 carrier for the recombination of the plasmid of pDC316-hBMP-7. The 293 cells were cotransfected by the skeleton plasmid of pBHG-fiber5/35 and the shuttle plasmid of pDC316-hBMP-7, and the recombinant plasmid of Ad5/F35-hBMP-7 was obtained; the recombinant plasmid of Ad5/F35enhancd green fluorescent protein(EGFP) was obtained by the similar method. The rat ADASCs were cultured and transfected by the Ad5/F35-hBMP-7plasmid and the Ad5/F35-EGFP plasmid, respectively; the remaining untransfected ADASC were used as the controls. The morphology and the growth pattern of the transfected cells were evaluated. The transcription and the expression of the transfected genes and the steogenic phenotypes such as calcium nodules and osteocalcin were evaluated by ELISA. Results The identification of PCR and enzyme cutting showed that the construction of the recombinant Ad5/F35-hBMP-7 plasmid could be confirmed. The transfection rate of the ADASC by the Ad5/F35-EGFP plasmid was determined to be greater than 90%. The hBMP-7 gene in thetransfected ADASC could express the corresponding protein, and the formation ofthe calcium nodules could be found in the induced group. The electron microscopy showed that there was a calcium element in the cytoplasm, the alkaline phosphatase result was positive, and the expression of osteocalcin was increased. Conclusion The rAd5/F35-hBMP-7 gene can promote the differentiation of the adiposederived adult stem cells to the osteoblasts in the bone tissue engineering.
Objective To introduce types and differentiation potentials of stem cells from adipose tissue, and its applications on regenerative medicine and advantages. Methods The literature of original experimental study and clinical research about bone marrow mesenchymal stem cells (BMSCs), adipose-derived stem cells (ADSCs), and dedifferentiated fat (DFAT) cells was extensively reviewed and analyzed. Results ADSCs can be isolated from stromal vascular fraction. As ADSCs have multi-lineage potentials, such as adipogenesis, osteogenesis, chondrogenesis, angiogenesis, myogenesis, and neurogenesis, they have already been successfully used in regenerative medicine areas. Dramatically, mature fat cells can be dedifferentiated and changed into fibroblast-like cells, named DFAT cells, via ceiling culture method. DFAT cells also had the same multi-lineage potentials as ADSCs, differentiating into adipocytes, osteocytes, chondrocytes, endothelial cells, muscle cells, and nerve cells. Compared with BMSCs which are commonly used as adult stem cells, ADSCs and DFAT cells have extensive sources and can be easily acquired. While compared with ADSCs, DFAT cells have good homogeneity and b proliferation capacity. Conclusion As a potential source of stem cells, adipose tissue will provide a new promising for regenerative medicine.