Objective To prepare silver-containing hydroxyapatite coating (hydroxyapatite/Ag, HA/Ag) and investigate its antibacterial property and biocompatibil ity in vitro. Methods Vacuum plasma spraying technique was adopted to prepare HA/Ag coating on titanium alloy substrate (3% Ag). After incubating the HA/Ag and the HA coating under staphylococcus aureus and pseudomonas aeruginosa suspensions of 2% tryptic soy broth (TBS) medium for 2, 4 and 7 days, respectively, the biofilm on the coatings was examined by confocal laser scanning microscope, and the bacterial density and viable bacterial percentage of bacterial biofilm were calculated. Meanwhile, the micro-morphology of bacterial biofilm was observed by SEM, the cytotoxicity was detected via MTT and the biocompatibil ity of biofilm was evaluated by acute aemolysis test. Results Compared with HA coating, the bacterial biofilm’s thickness on the surface of HA/Ag coating witnessed no significant difference at 2 days after culture (Pgt; 0.05), but decreased obviously at 4 and 7 days after culture (P lt; 0.01). The bacterial density of the biofilm increased with time, but there was no significant difference between two coatings (P gt; 0.05) at 2, 4 and 7 days after culture. The viable bacterial percentage of the biofilms on the surface of HA/Ag coating decreased obviously compared with that of HA coating at 2, 4 and 7 days after cultureP lt; 0.01). The MTT notified the cytotoxic grade of both coatings was zero. The acute haemolysis assay showed that the hemolytic rate of HA/Ag and HA coating was 0.19% and 0.12%, respectively. Conclusion With good biocompatibil ity, significant antibacterial property against staphylococcus aureus and pseudomonas aeruginosa, no obvious cytotoxicity and no erythrocyte destruction, the vacuum plasma sprayed HA/Ag coating is a promising candidate for the surface of orthopedic metal implants to improve their osseointegration and antibacterial property.
ObjectiveTo investigate the effects of micro/nano-structure and antimicrobial peptides (AMPs) on antibacterial properties of titanium (Ti) metallic surface.MethodsTi disks were treated via sandblasted large-grit acid-etched (SLA) and alkali-heat treatment (AHT) to build the micro/nano-structure, on which AMPs were spin-coated with a certain amount (10, 30, 50, 70, and 90 μg). Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were used to observe the surface structure and characterize the surface elements (i.e. contents of C, N, O, and Ti). Ti disks loaded with AMPs of difference amounts were co-cultured with Staphylococcus aureus (S. aureus) for 24 hours. After that, the formation and dimension of antibacterial circle were measured. Furthermore, the Ti disks treated with different approaches (untreated, SLA treatment, SLA+THA treatment, and 90 μg AMPs-loaded samples) were co-cultured with S. aureus and Escherichia coli (E.coli) for 3 hours, bacterial adhesion on the disks were evaluated by using SEM. The antibacterial performances in solution were quantitatively evaluated by immersing the Ti disks in bacterial solutions and measuring the absorbance (A) values.ResultsIt was found that the nanoporous structure could be easily constructed by SLA+AHT approach. After spin-coating AMPs, the nanopores with the diameter less than 200 nm were almost covered. According to the element analysis, with the increase of AMPs, the C content gradually increased; the N content was not detected until AMPs amount reached 70 μg on the disks. The diameter of antibacterial circle clearly depended on the AMPs amount. The Ti disks loaded with 90 μg AMPs had significantly larger antibacterial circles than the other Ti disks (P<0.05). Based on the SEM observation, the Ti disks loaded with 90 μg AMPs has the least bacterial attachment compared with the other Ti disks (P<0.05). TheA value of bacterial solution immersed with the Ti disks loaded with 90 μg AMPs was much lower than the other Ti disks (P<0.05).ConclusionThe approach of micro/nano-structure and AMPs can improve the antibacterial properties of Ti metallic surface.
Objective To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects. MethodsThe NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat’s BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively. Results NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA (P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres (P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG (P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA (P>0.05). Conclusion NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.
Objective To investigate the physicochemical properties of pure titanium surface grafted with chlorhexidine (CHX) by phenolamine coating, and to evaluate its antibacterial activity and osteoblast-compatibility in vitro. MethodsControl group was obtained by alkali and thermal treatment, and then immersed in the mixture of epigallocatechin-3-gallate/hexamethylene diamine (coating group). Phenolamine coating was deposited on the surface, and then it was immersed in CHX solution to obtain the grafted surface of CHX (grafting group). The surface morphology was observed by scanning electron microscope, the surface element composition was analyzed by X-ray photoelectron spectroscopy, and the surface hydrophilicity was measured by water contact angle test. Live/dead bacterial staining, nephelometery, and inhibition zone method were executed to evaluate the antibacterial property. Cytotoxicity was evaluated by MTT assay and cell fluorescence staining. Bacteria-MC3T3-E1 cells co‐culture was conducted to evaluate the cell viability on the samples under the circumstance with bacteria. Results Scanning electron microscope observation results showed that deposits of coating group and grafting group increased successively and gradually covered the porous structure. X-ray photoelectron spectroscopy results showed the peak of N1s enhanced and the peak of Cl2p appeared in grafting group. Water contact angle test results showed that the hydrophilic angle of three groups increased in turn, and there was significant difference between groups (P<0.05). Live/dead bacteria staining results showed that the grafting group had the least amount of bacteria adhered to the surface and the proportion of dead bacteria was high. The grafting group had a transparent inhibition zone around it and the absorbance (A) value did not increase, showing significant difference when compared with control group and coating group (P<0.05). MTT assay and cell fluorescence staining results showed that the number of adherent cells on the surface of the grafting group was the least, but the adherent cells had good proliferation activity. Bacteria-cell co-culture results showed that there was no bacteria on the surface of grafting group but live cells adhered well. ConclusionCHX-grafted phenolamine coating has the ability to inhibit bacterial adhesion and proliferation, and effectively protect cell adhesion and proliferation in a bacterial environment.