ObjectiveTo evaluate the value of real-time indocyanine green fluorescence imaging navigation (ICG-FIN) in laparoscopic rectal cancer surgery. MethodsThe patients who adopted ICG-FIN during laparoscopic rectal cancer surgery in the Department of Anorectal Surgery of Xuzhou Central Hospital from April 2022 to June 2023 according to the inclusion and exclusion criteria (ICG-FIN group) were collected, meanwhile matching (1∶1) of patients who did not adopt ICG-FIN during laparoscopic surgery from January 2021 to May 2022 (control group). The general data, surgical conditions, intraoperative and postoperative outcomes between the two groups were compared. ResultsThere were 62 patients in the ICG-FIN group and 62 patients in the control group. There were no statistical differences in the gender, age, body mass index, comorbidities, and so on between the two groups (P>0.05). The tumor localization, lymph node tracing, fluorescence imaging of the intended resection of intestinal tract and anastomotic site were observed in the ICG-FIN group. Seven patients (11.3%) had changed in the intended resection of intestinal anastomotic line during surgery, while there were no changes of the surgical plan in the control group. There were no statistical differences (P>0.05) in terms of surgical method, operative time, intraoperative bleeding, proportion of ileostomy, time of the first postoperative exhaust, postoperative hospital stay, and incidence of short-term complications between the two groups. Compared with the control group, the incidence of anastomotic leakage was lower (P=0.012), and the number of lymph nodes cleaned was more (P=0.016) in the ICG-FIN group. However, there was no statistical difference in the number of positive lymph nodes detected between the two groups (P=0.343). ConclusionsAccording to the results of this study, ICG-FIN is a reliable and effective method during laparoscopic rectal cancer surgery, which can accurately localize tumor, trace and guide lymph node dissection. Real-time evaluation of intestinal blood flow perfusion is of great practical value in reducing anastomotic leakage.
ObjectiveTo investigate the application and technical essentials of computer-assisted navigation in the surgical management of periacetabular fractures and pelvic fractures. MethodsBetween May 2010 and May 2011, 39 patients with periacetabular or anterior and posterior pelvic ring fractures were treated by minimally invasive fixation under computer-assisted navigation and were followed up more than 2 years, and the clinical data were analyzed retrospectively. There were 21 males and 18 females, aged 15-64 years (mean, 36 years). Fractures were caused by traffic accident in 23 cases, crush injury in 6 cases, and falling from height in 10 cases. Of them, 6 cases had acetabular fractures; 6 cases had femoral neck fractures; 18 cases had dislocation of sacroiliac joint; and 15 cases had anterior pelvic ring injuries. All patients were treated with closed or limited open reduction and screw fixations assisted with navigation. ResultsEighty-nine screws were inserted during operation, including 8 in the acetabulum, 18 in the neck of the femur, 33 in the sacroiliac joint, and 30 in the symphysis pubis and pubic rami. The mean time of screw implanted was 20 minutes (range, 11-38 minutes), and the average blood loss volume was 20 mL (range, 10-50 mL). The postoperative pelvic X-ray and three dimensional CT scan showed good reduction of fractures and good position of the screws. No incision infection, neurovascular injury, or implant failure occurred. All patients were followed up 27-33 months with an average of 29.6 months. The patients could walk with full weight loading at 6-12 weeks after operation (mean, 8 weeks); at last follow-up, the patients could walk on the flat ground, stand with one leg, and squat down, and they recovered well enough to do their job and to live a normal life. ConclusionMinimally invasive fixation under computer-assisted navigation may be an excellent method to treat some specific types of periacetabular and anterior and posterior pelvic ring fractures because it has the advantages of less trauma and blood loss, lower complication incidence, and faster recovery.
Objective To investigate the effectiveness and the advantage of fixation with percutaneous cannulated screws assisted by robot navigation in the treatment of femoral neck fractures by comparing with the conventional surgery. Methods Between January 2013 and December 2014, 20 patients with femoral neck fracture were treated by internal fixation with percutaneous cannulated screws assisted by robot navigation (navigation group), another 18 patients undergoing conventional surgery with manual positioning were chosen as the control group. There was no significant difference in gender, age, cause of injury, the injury side, time from injury to operation, and the classification of fractures between 2 groups (P > 0.05). The operation time, X-ray fluoroscopy time, blood loss, frequency of guide pin insertion, and healing time were recorded. At 1 week after operation, the parallel degree of screws was measured on the anteroposterior and lateral X-ray films; the Harris score was used to evaluate the hip function. Results All incisions of 2?groups healed by first intention after operation. There was no significant difference in operation time between 2?groups (t= -1.139, P=0.262). The blood loss, frequency of guide pin insertion, and X-ray fluoroscopy time of navigation group were significantly less than those of control group (P < 0.05). There were 2 screws penetrating into the joint cavity in control group. The patients were followed up 12-24 months with an average of 18 months. The navigation group got significantly better parallel degree of screws than control group on the anteroposterior and lateral X-ray films (t=25.021, P=0.000; t=18.659, P=0.000). Fractures healed in all patients of navigation group (100%), and the healing time was (21.8±2.8) weeks; fracture healed in 16 patients of control group (88.9%), and the healing time was (24.0 ± 3.7) weeks. There was no significant difference in healing rate and healing time between 2 groups (χ2=2.346, P=0.126; t=1.990, P=0.055). The Harris score of navigation group (87.1±3.7) was significantly higher than that of control group (79.3±4.7) at last follow-up (t= -5.689, P=0.000). Conclusion Cannulated screw fixation assisted by robot navigation is a good method to treat femoral neck fractures, which has the advantages of more accurate positioning, better hip function recovery, less surgical trauma, and shorter X-ray exposure time.
Objective To investigate the differences in the topology of functional brain networks between populations with good spatial navigation ability and those with poor spatial navigation ability. Methods From September 2020 to September 2021, 100 college students from PLA Army Border and Coastal Defense Academy were selected to test the spatial navigation ability. The 25 students with the highest spatial navigation ability were selected as the GN group, and the 25 with the lowest spatial navigation ability were selected as the PN group, and their resting-state functional MRI and 3D T1-weighted structural image data of the brain were collected. Graph theory analysis was applied to study the topology of the brain network, including global and local topological properties. Results The variations in the clustering coefficient, characteristic path length, and local efficiency between the GN and PN groups were not statistically significant within the threshold range (P>0.05). The brain functional connectivity networks of the GN and PN groups met the standardized clustering coefficient (γ)>1, the standardized characteristic path length (λ)≈1, and the small-world property (σ)>1, being consistent with small-world network property. The areas under curve (AUCs) for global efficiency (0.22±0.01 vs. 0.21±0.01), γ value (0.97±0.18 vs. 0.81±0.18) and σ value (0.75±0.13 vs. 0.64±0.13) of the GN group were higher than those of the PN group, and the differences were statistically significant (P<0.05); the between-group difference in AUC for λ value was not statistically significant (P>0.05). The results of the nodal level analysis showed that the AUCs for nodal clustering coefficients in the left superior frontal gyrus of orbital region (0.29±0.05 vs. 0.23±0.07), the right rectus gyrus (0.29±0.05 vs. 0.23±0.09), the middle left cingulate gyrus and its lateral surround (0.22±0.02 vs. 0.25±0.02), the left inferior occipital gyrus (0.32±0.05 vs. 0.35±0.05), the right cerebellar area 3 (0.24±0.04 vs. 0.26±0.03), and the right cerebellar area 9 (0.22±0.09 vs. 0.13±0.13) were statistically different between the two groups (P<0.05). The differences in AUCs for degree centrality and nodal efficiency between the two groups were not statistically significant (P>0.05). Conclusions Compared with people with good spatial navigation ability, the topological properties of the brains of the ones with poor spatial navigation ability still conformed to the small-world network properties, but the connectivity between brain regions reduces compared with the good spatial navigation ability group, with a tendency to convert to random networks and a reduced or increased nodal clustering coefficient in some brain regions. Differences in functional brain network connectivity exist among people with different spatial navigation abilities.
Indocyanine green fluorescence imaging has been widely used in hepatobiliary surgery, which can guide accurate hepatectomy and improve the prognosis of patients. Lipiodol–indocyanine green emulsion as a pure physical way to prepare lipiodol-drug mixed solvent can be used for primary interventional embolization and subsequent fluorescence-guided hepatectomy. In this paper, the application of iodized oil-indocyanine green emulsion in hepatectomy was summarized by reviewing relevant research progress at home and abroad, and further discussion and prospect were made.
ObjectiveTo explore the clinical application of the comprehensive guidance technologies, such as cone beam computed tomography (CBCT), virtual bronchoscopic navigation (VBN), and superimposed high-frequency jet ventilator for respiratory control in the biopsy of peripheral pulmonary nodules (PPNs). MethodsThe clinical information of 3 patients with PPNs diagnosed by CBCT combined with VBN and superimposed high frequency superposition jet ventilator in Shanghai Changhai Hospital were retrospectively analyzed. Results Clinical data of 3 patients were collected. The average diameter of PPNs was (25.3±0.3) mm with various locations in left and right lung. The first nodule was located in the apex of the left upper lung, and the biopsy was benign without malignant cells. The lesion was not enlarged during the 5-year follow-up. The second one was located in the left lingual lung, and the postoperative pathology was confirmed as mucosa-associated lymphoma. The third one was located in the anterior segment of the right upper lung. After the failure of endobronchial procedure, percutaneous PPNs biopsy under CBCT combined with VBN was performed, and the pathological diagnosis was confirmed as primary lung adenocarcinoma. Postoperative pneumothorax complication occurred in the third patient with right lung compression rate approximately 20%. ConclusionsThe application of CBCT, combined with VBN and the superimposed high frequency jet ventilator for respiratory control can potentially improve the accuracy and safety in the diagnosis of PPNs. Multi-center clinical trials are needed to verify its further clinical application.
Simultaneous restoration of function and appearance should be performed in mandibular reconstruction. Option of reconstructive techniques is determined by cause, location, extent, and classification of the mandibular defects. Vascularize bone graft is one of the most popular technique in current clinical practice of mandibular reconstruction. Fibula is the most common donor site for mandibular reconstruction. The disadvantage of low height of neo-mandible reconstructed by single fibular segment can be solved by vascularized double barrel fibula graft. Using virtual surgical planning and intraoperative navigation for mandibular reconstruction leads to simplify surgical procedure, reduce operating time and injury, and decrease donor site morbidity so that accurate mandibular reconstruction could be completed. Direction of minimal invasive surgery for mandibular reconstruction will be developed by intraoral approach and intraoral anastomosis.
ObjectiveTo evaluate the safety of photoelectric guided navigation unilateral puncture of the percutaneous kyphoplasty (PKP) in the treatment of thoracolumbar osteoporotic vertebral compression fracture (OVCF).MethodsA randomized controlled clinical research was performed between June 2015 and January 2017. Eighty-five cases of OVCF were treated with photoelectric guided navigation unilateral puncture of the PKP (trial group, 43 cases) or C arm fluoroscopy unilateral puncture of the PKP (control group, 42 cases) respectively. There was no significant difference in gender, age, disease duration, segmental fracture, AO classification, bone mineral density, and preoperative visual analogue scale (VAS) score between 2 groups (P>0.05). The concordance rate of puncture path and design path, the incidence of pedicle wall breaking, the incidence of bone cement leakage, and the rate of bone cement distribution center were observed and calculated on postoperative CT images; the intraoperative X-ray exposure frequency, frequency of puncture, operation time, VAS scores before operation and at 2 days after operation, and postoperative blood vessel or nerve injury were recorded and compared.ResultsThe intraoperative X-ray exposure frequency and puncture frequency in trial group were significantly less than those in control group (P<0.05), but there was no significant difference in operation time between 2 groups (t=0.440, P=0.661). The VAS scores of 2 groups at 2 days after operation were significantly improved when compared with preoperative ones (P<0.05), but there was no significant difference in VAS score at 2 days after operation between 2 groups (t=0.406, P=0.685). All the patients were followed up 6-18 months (mean, 10 months). No blood vessel or nerve injury occurred in 2 groups. The incidence of pedicle wall breaking, the incidence of bone cement leakage, the concordance rate of puncture path and design path, and the rate of bone cement distribution center in trial group were 2.33% (1/43), 2.33% (1/43), 86.05% (37/43), and 88.37% (38/43) respectively, all showing significant differences when compared with those of control group [19.05% (8/42), 21.43% (9/42), 45.24% (19/42), and 50.00% (21/42) respectively] (P<0.05).ConclusionIntraoperative photoelectric guided navigation unilateral puncture of the PKP can improve the success rate of target puncture and reduce the incidence of pedicle wall breaking effectively, and achieve better bone cement distribution and better security.
Spanning two decades since the 1st generation spinal robotics inception, the robot-assisted spine surgery (RSS) technology has evolved through generations, culminating in the 4th generation characterized by real-time visual navigation and wire-free screw placement. The fundamental principles of RSS technology include surgical planning, tracking, image registration, and robotic arm control technologies. Currently, RSS technology is maturely employed in thoracolumbar procedures and is progressively being applied in cervical surgeries, spinal tumor resections, and percutaneous operations, offering advantages in reducing tissue trauma and exposure to radiation, thereby improving patient outcomes. Emerging research also focuses on the cost-effectiveness of clinical applications and robot-specific complications. With the integration of artificial intelligence into surgical planning, RSS technology is poised to further incorporate emerging technologies and expand its application across a broader clinical spectrum.
ObjectiveTo explore the effectiveness and advantage of three-dimensional (3D) printed navigation templates assisted Ludloff osteotomy in treatment of moderate and severe hallux valgus.MethodsBetween April 2013 and February 2015, 28 patients (28 feet) with moderate and severe hallux valgus who underwent Ludloff osteotomy were randomly divided into 2 groups (n=14). In group A, the patients were treated with Ludloff osteotomy assissted with a 3D printed navigation template. In group B, the patients were treated with traditional Ludloff osteotomy. There was no significant difference in gender, age, affected side, and clinical classification between 2 groups (P>0.05). The operation time and intraoperative blood loss were recorded. The ankle function of the foot at preoperation, immediate after operation, and last follow-up were assessed by the American Orthopedic Foot and Ankle Society (AOFAS) score. Besides, the X-ray film were taken to assess the hallux valgus angle (HVA), intermetatarsal angle (IMA), and the first metatarsal length shortening.ResultsAll patients were followed up 18-40 months (mean, 26.4 months). The operation time and intraoperative blood loss in group A were significantly less than those in group B (P<0.05). The HVA, IMA, and AOFAS scores in groups A and B at immediate after operaton and last follow-up were sinificantly improved when compared with preoperative values (P<0.05); but no significant difference was found between at immediate after operation and at last follow-up (P>0.05). No significant difference was found in HVA and IMA between group A and group B at difference time points (P>0.05). There were significant differences in AOFAS score and the first metatarsal length shortening at immediate after operation and at last follow-up between 2 groups (P<0.05). Except 1 case of metastatic metatarsalgia in group B, there was no other operative complications in both groups.Conclusion3D printed navigation template assisted Ludloff osteotomy can provide accurate preoperative planning and intraoperative osteotomy. It is an ideal method for moderate and severe hallux valgus.