Objective To study the clinical effects of artificial vertebral laminae of the biomimetic nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composites in prevention of the scar formation in lumbar spinal canal and the reconstruction of posterior vertebral laminae structure. Methods From January 2003 to December 2005, 23 patients were treated with artificialvertebral laminae of the biomimetic n-HA/PA66 composites. There were 16 males and 7 females, aging from 48 to 76 years with an average of 59 years. Of 23 cases,11 cases had spinal stenosis, 7 cases had spinal stenosis with spondylolysis, 3 cases had lumbar disk herniation and 2 cases had spinal tumor. Twenty cases of vertebral laminae were reconstructed by 1 artificial vertebral laminae and 3 cases by 2.The affected locations were C5,6,L1 and L2 in 1 case respectively; L4,5 in 5 cases; L4-S1 in 9 cases; and L5, S1 in 6 cases. Results First intension was achieved in 22 cases and infection occured in 1 case.In the period of follow-up for all cases lasted from 5 to 24 months,the postoperative CT showed that the nHA/PA66 artificial vertebral laminae enlarged the spinal canal. MRI showed little scar formation and adhesion in the lumbar spinal canal. CT showed illdefined boundary between artificial vertebral laminae and recipient vertebral laminae. No neural symptoms occured in all cases except onebecause of stretch injury of nerve root in operation. Also no rejection reaction was observed. Conclusion The artificial vertebral laminae of the biomimetic nHA/PA66 composites can effectively prevent the compression to the nerve root and dural sac from the scar and restore the vertebral laminae.
Objective To develop the plastic nano-hydroxyapatite (nano-HA)/poly (3-hydroxybutyrate-hydroxyvalerate) polyethylene glycol(PHBV-PEG) gentamicin (GM) drug delivery system(DDS)(nano-HA/PHBV-PEG-GM-DDS) for treating osteomyelitis and find its releasing character in vivo. Methods The plastic nano-HA/PHBV- PEG-GM-DDS was prepared using nanoHAas the core carrier of GM, nano-HA with PHBV and PEG as coating and plastic fibrin glue(FG) as microsphere scaffold. The morphological features of nano-HA,drug loaded nano-HA and drug loaded nano-HA/PHBVPEG microsphere were examined by electron microscope.The GM concentration in blood, cortex bone and cancellousbone was detected at 12 different time points by the method of K-B after the plastic nano-HA/PHBV-PEGGM-DDS was implanted into the femora of 36 rabbits. Its GM releasing character was assayed in vivo. Results Nano-HA was similar to a blackjack, and its length was less than 60 nm. Drug loaded nano-HA appeared natural crystal condensate, of which surface adsorbed massive GM. The average grain diameter was 200.5 nm. Drug loaded nanoHA/PHBV-PEG microsphere had a shrinkable porous structure, of which surface configuration was consistent. The average grain diameter was 34.5 μm. The GM concentration and the antibacterial annulus was in the linear correlation. The correlation coefficient was 0.998. In cortex and cancellous bone tissue, the GM concentration was about 95.50±16.50 μg/ml and 80.20±13.80 μg/ml from the plastic nano-HA/PHBV-PEG-GM-DDS on the 1st day, then decreased gradually. After 56 days of operation, the GM concentration still exceeded the minimum inhibitory concentrationfor the staphylococcus aureus, but the peak level of serum GM concentration wasunder the nephrotoxicity concentration. Conclusion Plastic nano-HA/PHBV-PEG-GM-DDS was a good drug delivery system with sustained antibiotic effect in vivo. It was an effective method for the treatment of osteomyelitis.
OBJECTIVE: To investigate the ability of repairing bone defect with the compound of coralline hydroxyapatite porous (CHAP), fibrin sealant(FS) and staphylococcus aureus injection (SAI), and the feasibility to use the compounds as bone substitute material. METHODS: The animal model of bone defect was made on the bilateral radius of 54 New Zealand white rabbits, which were randomly divided into the experimental group(the defect was repaired with CHAP-FS-SAI), control group(with autograft) and blank control group(the defect was left unrepaired) with 18 rabbits in each group. The ability of bone defect repair was evaluated by gross observation, histopathological study, X-ray and biomechanical analysis 2, 4, 8 and 12 weeks after repair. RESULTS: (1) In the 2nd week, tight fibro-connection could be found between the implant and fracture site and there were many fibroblasts and capillary proliferation with many chondrocytes around CHAP in the experimental group, while only a few callus formed, and chondrocytes, osteoblast and osteoclast existed in the control group. (2) In experimental group and control group, a large quantity of callus was found 4 and 8 weeks; ossification of chondrocytes with weave bone formation were found 4 weeks and many osteocytes and weave bones and laminar bones were found 8 weeks. (3) In the 12th week, the complete ossification of implant with well bone remodeling, a large number of mature osteocytes and laminar were found in experimental group and control group, and CHAP still existed in the experimental group; the defect area filled with fibro-scar tissue and only many fibroblasts could be seen in blank control group. (4) X-ray findings were the following: In experimental and control groups, callus formation could be seen 2 weeks postoperatively, more callus formed 4 weeks, the bone defect area disappeared and CHAP scattered in the callus 8 weeks; the fracture line disappeared and medullary cavity became united (in control group); and in the 12th week, the cortex became continuous, the medullary cavity became united, and remodeling completed, while bone defect was not still united in blank control group. The maximal torque and torsional stiffness in the experimental group is higher than those in the control group 2 weeks (P lt; 0.05), but there was no significant difference (P gt; 0.05) between the two groups 4, 8, 12 weeks after repair. CONCLUSION: The compound of CHAP-FS-SAI has good biological compatibility, and it can be used for one kind of bone substitute material to repair the bone defect.
Objective Choose polylactide-co-glycolide/hydroxyapatite (PLGA/HA) and porous phosphate calcium (PPC) as the object that we will study, compare their degradabality and choose one as a suitable scaffold for rib reconstruction. Methods All the experiments were divided into PLGA/HA group and CPC group. Degradabality experiment in exvivo: put the two scaffold which have the same size into 0.9% NaCl, keep sterile, then put the container into warm cage,get out and weigh them in 2, 4, 8, 12 and 24 weeks, compare the different speed of the two scaffold. Degradability experiment in vivo: put the two scaffold which have the same size under the skin of the rabbit, and weigh them in 2, 4, 8, 12 and 24 weeks, the tissue around the scaffold was examinzed by HE and the scaffold was examined by electron scanning microscope. Results Micro-CT and Scanning electron microscopy shows that CPC group had better structure (1101.2228±0.6184 mg/ccm vs. 1072.5523±0.7442 mg/ccm)and porosity(70.26%±0.45% vs.72.82%±0.51%)than PLGA/HA group; The result of degradabality experiment in vitro shows that the speed of the two scaffolds was slow. It is at 24 weeks that the degradability is obvious,and the PLGA/HA group degraded a lot which was 60%. The result of degradabality experiment in vivo shows that the speed of degradabality of PLGA/HA group was faster than that is in the 0.9% Nacl, also was faster than that of CPC group which was 96%.The reponse of tissue around the PLGA/HA was more sever than that of CPC group which is in favour of the growth of cells. Conclusion As for the reconstruction of large defect of rib, CPC is more suitable than PLGA/HA.
Objective To observe the effect of dynamic mechanical loading on the proliferation, differentiation, and specific gene expression of MC3T3-E1 cells that on three-dimensional (3D) biomimetic composite scaffolds prepared by low temperature 3D printing technology combined with freeze-drying. Methods The silk fibroin, collagen type Ⅰ, and nano-hydroxyapatite (HA) were mixed at a mass ratio of 3∶9∶2 and were used to prepare the 3D biomimetic composite scaffolds via low temperature 3D printing technology combined with freeze-drying. General morphology of 3D biomimetic composite scaffold was observed. Micro-CT was used to observe the pore size and porosity of the scaffolds, and the water swelling rate, stress, strain, and elastic modulus were measured. Then, the MC3T3-E1 cells were seeded on the 3D biomimetic composite scaffolds and the cell-scaffold composites were randomly divided into 2 groups. The experimental group was subjected to dynamic mechanical loading (3 500 με, 1 Hz, 15 minutes per day); the control group was not subjected to loading treatment. After 7 days and 14 days, the cell-scaffold composites of 2 groups were harvested to observe the growth of cells on the scaffolds by HE staining and scanning electron microscope. And the gene and protein expressions of collagen type Ⅰ, BMP-2, and osteocalcin (OCN) were measured by real-time fluorescent quantitative PCR and Western blot. Results The 3D biomimetic composite scaffold was a white cubic grid. Micro-CT detection showed the pore network structure in the scaffold material with good pore connectivity. The diameters of large pore and micro-aperture were (506.37±18.63) μm and (62.14±17.35) μm, respectively. The porosity was 97.70%±1.37%, and the water absorption swelling rate was 1 341.97%±64.41%. Mechanical tests showed that the compression displacement of the scaffold was (0.376±0.004) mm, the compressive stress was (0.016±0.002) MPa, and the elastic modulus was (162.418±18.754) kPa when the scaffold was compressed to 10%. At 7 days and 14 days, HE staining and scanning electron microscope observation showed that the cells grew inside the scaffold, mainly distributed around the scaffold pore wall. The cells in experimental group were more than control group, and the cells morphology changed from shuttle to flat. There was no significant difference in the cell counting between 2 groups at 14 days after 200-fold microscopy (t=–2.024, P=0.080), but significant differences were found between 2 groups at different time points under different magnifications (P<0.05). Real-time fluorescent quantitative PCR showed that the mRNA relative expressions of collagen type Ⅰ and OCN in experimental group were significantly higher than those in control group at 7 and 14 days (P<0.05). However, the mRNA relative expression of BMP-2 showing no significant difference between 2 groups (P>0.05). The protein relative expressions of collagen type Ⅰ, BMP-2, and OCN in experimental group were significantly higher than those in control group at 7 and 14 days (P<0.05). Conclusion After dynamic mechanical loading, the expressions of BMP-2, collagen type Ⅰ, and OCN in MC3T3-E1 cells inoculated into 3D biomimetic composite scaffolds are significantly up-regulated, indicating that appropriate mechanical loads favor osteoblast differentiation of MC3T3-E1 cells.
Abstract A new type of artificial material could possibly be produced by combination of osteoblast with bioactive material in culture, and thus, make the material "alive" . To study the behavior of osteoblast cultured with bioactive materials, the osteoblasts were isolated from the periosteum of Newzeland Rabbits tibia, and cultured in RPMI1640 medium. After 13 subcultures, the cells were identified as osteoblast in vitro by electron microscope, AKP activity and detection of mineral deposition ability. The osteoblasts were subcultured with three bioactive materials: bioactive glass ceramics (BGC), hydroxyapatite (HA), and double phase hydroxyapatite (HA/TCP). After incubationfor 48 hours, scan electron microscope, 3H-TDR, XRD, RS and EDXAwere performed. The results showed that the osteoblasts grew on the HA/TCR had a higher proliferation rate and better osteoblastoid shape than those grew on BCG and HA. Themechanism of the growth of osteoblasts on bioactive materials was discussed, and the factors influencing the growth of osteoblast were analyzed.
OBJECTIVE: To prepare chitosan-gelatin/hydroxyapatite (CS-Gel/HA) composite scaffolds, and to investigate the influence of components and preparing conditions to their micromorphology. METHODS: The CS-Gel/HA composite scaffolds were prepared by phase-separation method. Micromorphology and porosity were detected by using scanning electron microscope and liquid displacement method respectively. RESULTS: Porous CS-Gel/HA composite scaffolds could be prepared by phase-separation method, and their density and porosity could be controlled by adjusting components and quenching temperature. CONCLUSION: The study suggests the feasibility of using CS-Gel/HA composite scaffolds for the transplantation of autogenous osteoblasts to regenerate bone tissue.
Objective Titania and Ag containing nano-hydroxyapatite/polyamide 66 (TiO2-Ag-nHA/PA66) composite bone fill ing material has good biocompatibil ity and biological safety. To investigate the antibacterial effect and Ag+ release characteristics of TiO2-Ag-nHA/PA66 composite bone fill ing material containing different concentrations of Ag+ in vitro. Methods The n-HA/PA66 composite bone fill ing material A1 (material A1) was prepared by co-polymerization method, and TiO2-Ag-nHA/PA66 composite bone fill ing materials A2 and A3 (materials A2 and A3) were prepared by thesame way containing Ag+ of 0.22wt% and 0.64wt%, respectively, and the TiO2 content was 2.35wt%. The materials A2 and A3 were respectively immersed in 50 mL simulated body fluid (SBF), and Ag+ concentration was measured by atomic absorption spectrometry at 1, 3, 7, 14, 21, and 49 days. The inhibition ring test and colony count method were used to evaluate antibiotic effect against Staphylococcus aureus and Escherichia coli, the anti-adhesion capacity of Staphylococcus aureus and Escherichia coli was observed by scanning electron microscope (SEM). Results There was no significant difference in the Ag+ concentration between materials A2 and A3 at 1 day and 3 days (P gt; 0.05); and there were significant differences in the Ag+ concentration between materials A2 and A3 after 7 days (P lt; 0.05). The inhibition ring diameters of materials A2 and A3 to Staphylococcus aureus and Escherichia coli reached the maximum at 1 day, which were (13.40 ± 2.88), (9.40 ± 1.14) mm and (23.60 ± 1.14), (18.80 ± 0.84) mm, showing significant difference (P lt; 0.05) between materials A2 and A3 respectively; and then, the diameter of inhibition ring reduced with the time. The antibacterial effect of materials A2 and A3 against Staphylococcus aureus and Escherichia coli lasted 15, 33 days and 9, 24 days, respectively. No inhibition ring was observed around material A1 all the time. And the inhibitory rates of materials A2 and A3 were 89.74% ± 3.62%, 94.18% ± 2.05% and 78.65% ± 5.64%, 85.96% ± 2.50%; showing significant differences (P lt; 0.05) among materials A1, A2, and A3. SEM showed that bacterial adhesion of materials A2 and A3 was obviously fewer than that of material A1. Conclusion TiO2-Ag-nHA/PA66 composite bone fill ing material has antibacterial property against Staphylococcus aureus and Escherichia coli, and it has a good release effect in SBF.
Objective To investigate the ability of repairing bone defect with the compound of recombinant human insulinlike growth factor 1 (rhIGF-1), coralline hydroxyapatite(CHA) and autogeneous red bone marrow(ARBM), and to study the feasibility of the compounds being used as bone substitute materials. Methods Bilateral radius bone defects(11 mm in length) were created in 54 Chinese rabbits,which were randomly divided into 3 groups, and two different materials were randomly transplanted into the bilateral defects:in group 1, with material A(rhIGF-1/CHA/ARBM) and material B(CHA/ARBM); in group 2, with material C(rhIGF-1/CHA) and material D(CHA); in group 3, with E(autograft) and F(no implant) as controls. At 2, 4, 8 and 12 weeks, the effects were assessed by X-ray andimage analysis, biomechanics(at 12 weeks), as well as histological observation. Results X-ray and image analysis showed that material A of group 1was significantly superior to any other materials(P<0.01). Antibending biomechanic detection showed that material A and Ewas significantly superior to the other materials(Plt;0.01), but no significant difference was found between A and E in the 12th week(Pgt;0.05). And by histological observation, in analogical bone morphological progress, materials C and D obviously inferior to materials A, B and E, but there was no significant difference between materials C and D. F had no evidence of new bone rebridging. Conclusion The recombinant compound CHA/ARBM(rhIGF-1),which posseses the potential ability of osteogenesis,osteoconduction and osteoinduction for bone defect repairing,can serve as a new type of autogenous bone substitute material.
Objective To assess the mid-term effectiveness of anterior decompression and fusion with nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage in treatment of cervical spondylotic myelopathy. Methods A retrospective study was made on 48 patients with cervical spondylotic myelopathy who underwent anterior decompression and fusion with n-HA/PA66 cage between August 2008 and January 2010. There were 33 males and 15 females with an average age of 54.5 years (range, 42-72 years). The disease duration was 3-12 months (mean, 6 months). The affected segments included 35 cases of single segment (C3, 4 in 7, C4, 5 in 18, and C5, 6 in 10) and 13 cases of double segments (C3-5 in 7 and C4-6 in 6). Of 48 patients, 28 was diagnosed as having intervertebral disc protrusion, 12 as having ossification of posterior longitudinal ligament, and 8 as having vertebral osteophyte; 35 patients underwent single segmental anterior corpectomy and fusion, and 13 patients underwent single segmental anterior discectomy and fusion. The pre- and post-operative radiographs (cervical anteroposterior and lateral X-ray films and three-dimensional CT scans) were taken to measure the segmental height and lordosis angle. Brantigan et al assessment standard and visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were used to evaluate the graft fusion and the improvement of clinical symptoms, respectively. Results All patients were followed up for 46 months on average (range, 36-54 months). No cage breaking, displacement, or sliding was found. At last follow-up, 36 cases were rated as Brantigan grade E, 10 cases as grade D, and 2 cases as grade C; the fusion rate was 96%. Both segmental height and lordosis angle were corrected significantly at immediate and 6 months after operation and last follow-up than those before operation (P lt; 0.05), but no significant difference was found among different time points after operation (P gt; 0.05). At last follow-up, the cage subsidence was (1.3 ± 1.0) mm. The VAS and JOA scores at 6 months after operation and last follow-up were significantly improved when compared with preoperative scores (P lt; 0.05), and the scores at last follow-up were superior to ones at 6 months after operation (P lt; 0.05). Conclusion The mid-term effectiveness of anterior decompression and fusion with the n-HA/PA66 cage in patients with cervical spondylotic myelopathy is satisfactory because it can effectively restore and maintain segmental height and lordosis angle and promote osseous fusion.