• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "finite element" 83 results
        • A numerical analysis of the effects of the lower-limb prosthetic socket on muscle atrophy of the residual limb

          Muscle atrophy of the residual limb after lower-limb amputation is a disadvantage of amputees' rehabilitation. To investigate the biomechanics mechanism of muscle atrophy of the residual limb, we built a finite element model of a residual limb including muscle, skeletons and main vessels based on magnetic resonance images of a trans-femoral amputee, and studied the biomechanics effects of the socket of the lower-limb prosthesis on the soft tissue and vessels in the residual limb. It was found that the descending branch of the lateral femoral circumflex artery suffered the most serious constriction due to the extrusion, while that of the deep femoral artery was comparatively light. Besides, the degree of the constriction of the descending branch of the lateral femoral circumflex vein, femoral vein and deep femoral vein decreased in turn, and that of the great saphenous vein was serious. The stress-strain in the anterior femoral muscle group were highest, while the stress concentration of the inferior muscle group was observed at the end of the thighbone, and other biomechanical indicators at the inferior region were also high. This study validated that the extrusion of the socket on the vessels could cause muscle atrophy to some degree, and provided theoretical references for learning the mechanism of muscle atrophy in residual limb and its effective preventive measures.

          Release date:2019-02-18 02:31 Export PDF Favorites Scan
        • Finite Element Analysis of Intravascular Stent Based on ANSYS Software

          This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.

          Release date: Export PDF Favorites Scan
        • Biomechanical characteristics and clinical application of three-dimensional printed osteotomy guide plate combined with Ilizarov technique in treatment of rigid clubfoot

          ObjectiveTo explore the biomechanical characteristics and clinical application effects of three-dimensional (3D) printed osteotomy guide plate combined with Ilizarov technique in the treatment of rigid clubfoot. Methods A retrospective analysis was performed on the clinical data of 11 patients with rigid clubfoot who met the inclusion criteria and were admitted between January 2019 and December 2024. There were 6 males and 5 females, aged 21-60 years with an average of 43.2 years. Among them, 5 cases were untreated congenital rigid clubfoot, 4 cases were recurrent rigid clubfoot after previous treatment, and 2 cases were rigid clubfoot due to disease sequelae. All 11 patients first received slow distraction using Ilizarov technique combined with circular external fixator until the force lines of the foot and ankle joint were basically normal. Then, 1 male patient aged 24 years was selected, and CT scanning was used to obtain imaging data of the ankle joint and foot. A 3D finite element model was established and validated using the plantar stress distribution nephogram of the patient. After validation, the biomechanical changes of the tibiotalar joint under the same load were simulated after triple arthrodesis and fixation. The optimal correction angle of the hindfoot was determined to fabricate 3D-printed osteotomy guide plates, and all 11 patients underwent triple arthrodesis using these guide plates. The functional recovery was evaluated by comparing the American Orthopaedic Foot and Ankle Society (AOFAS) score, International Clubfoot Study Group (ICFSG) score, and 36-Item Short Form Survey (SF-36) score before and after operation. Results Finite element analysis showed that the maximum peak von Mises stress of the tibiotalar joint was at hindfoot varus 3° and the minimum at valgus 6°; the maximum peak von Mises stress of the 3 naviculocuneiform joints under various conditions appeared at lateral naviculocuneiform joint before operation, and the minimum appeared at lateral naviculocuneiform joint at neutral position 0°; the maximum peak von Mises stress of the 5 tarsometatarsal joints under various conditions appeared at the 2nd tarsometatarsal joint at hindfoot neutral position 0°, and the minimum appeared at the 1st tarsometatarsal joint at valgus 6°. Clinical application results showed that the characteristics of clubfoot deformity observed during operation were consistent with the preoperative 3D reconstruction model. All 11 patients were followed up 8-24 months with an average of 13.1 months. One patient had postoperative incision exudation, which healed after dressing change; the remaining patients had good incision healing. All patients achieved good healing of the osteotomy segments, with a healing time of 3-6 months and an average of 4.1 months. At last follow-up, the AOFAS score, SF-36 score, and ICFSG score significantly improved when compared with those before operation (P<0.05). ConclusionThe 3D-printed osteotomy guide plate combined with Ilizarov technique has favorable biomechanical advantages in the treatment of rigid clubfoot, with significant clinical application effects. It can effectively improve the foot function of patients and achieve precise and personalized treatment.

          Release date:2025-08-04 02:48 Export PDF Favorites Scan
        • Finite element analysis of male lower urinary tract based on the collodion slice images

          Males typically have high rates of morbidity of primary bladder neck obstruction, while the existing urodynamic examination is invasive and more likely to cause false diagnosis. To build a non-invasive biomechanical detecting system for the male lower urinary tract, a finite element model for male lower urinary tract based on the collodion slice images of normal male lower urinary tract was constructed, and the fluid-structure interaction of the lower urinary tract was simulated based on the real urination environment. The finite element model of the lower urinary tract was validated by comparing the clinical experiment data with the simulation result. The stress, flow rate and deformation of the lower urinary tract were analyzed, and the results showed that the Von Mises stress and the wall shear stress at the membrane sphincter in the normal male lower urinary tract model reached a peak, and there was nearly 1 s delay than in the bladder pressure, which helped to validate the model. This paper lays a foundation for further research on the urodynamic response mechanism of the bladder pressure and flow rate of the lower urinary tract obstruction model, which can provide a theoretical basis for the research of non-invasive biomechanical detecting system.

          Release date:2018-08-23 05:06 Export PDF Favorites Scan
        • Biomechanical analysis and effectiveness evaluation of zone Ⅰ+Ⅱ+Ⅲ reconstruction of hemipelvis with rod-screw prosthesis

          ObjectiveTo analyze the biomechanical properties of the rod-screw prosthesis based on a pelvic three-dimensional finite element model including muscle and ligament, and evaluate the effectiveness of zoneⅠ+Ⅱ+Ⅲ reconstruction of hemipelvis with rod-screw prosthesis in combination with clinical applications. Methods A total of 21 patients who underwent hemipelvic tumor resection (zoneⅠ+Ⅱ+Ⅲ) and rod-screw prosthesis reconstruction between January 2015 and December 2020 were selected as the research subjects. Among them, there were 11 males and 10 females; the age ranged from 16 to 64 years, with an average age of 39.2 years. There were 9 cases of chondrosarcoma, 7 cases of osteosarcoma, 3 cases of Ewing sarcoma, and 2 cases of undifferentiated pleomorphic sarcoma. According to the Musculoskeletal Tumor Society Score (MSTS) staging, there were 19 cases of stage ⅡB and 2 cases of stage Ⅲ. Preoperative Harris Hip Score (HHS) and MSTS score were 54.4±3.1 and 14.1±2.0, respectively. Intraoperative 15 cases underwent extensive resection, 5 cases underwent marginal resection, and 1 case underwent intralesional resection. The CT image of 1 patient after reconstruction was used to establish a three-dimensional solid model of the pelvis via Mimics23Suite and 3-matic softwares. At the same time, a mirror operation was used to obtain a normal pelvis model, then the two solid models were imported into the finite element analysis software Workbench 2020R1 to establish three-dimensional finite element models, and the biomechanical properties of the standing position were analyzed. The operation time, intraoperative blood loss, and operation-related complications were recorded, and the postoperative evaluation was carried out with HHS and MSTS scores. Finally, the local recurrence and metastasis were reviewed. ResultsFinite element analysis showed that the peak stress of the reconstructed pelvis appeared at the fixed S1, 2 rod-screw connections; the peak stress without muscles was higher than that after muscle construction, but much smaller than the yield strength of titanium alloy. The operation time was 250-370 minutes, with an average of 297 minutes; the amount of intraoperative blood loss was 3 200-5 500 mL, with an average of 4 009 mL. All patients were followed up 8-72 months, with an average of 42 months. There were 7 cases of pulmonary metastasis, of which 2 cases were preoperative metastasis; 5 cases died, 16 cases survived, and the 5-year survival rate was 72.1%. There were 3 cases of local recurrence, all of whom did not achieve extensive resection during operation. The function of the affected limbs significantly improved, and the walking function was restored. The HHS and MSTS scores were 75.2±3.0 and 20.4±2.0 at last follow-up, respectively, and the differences were significant when compared with those before operation (t=22.205, P<0.001; t=11.915, P<0.001). During follow-up, 2 cases of delayed incision healing, 2 cases of deep infection, 1 case of screw loosening, and 1 case of prosthesis dislocation occurred, and no other complication such as prosthesis or screw fracture occurred. Conclusion The stress and deformation distribution of the reconstructed pelvis are basically the same as normal pelvis. The rod-screw prosthesis is an effective reconstruction method for pelvic malignant tumors.

          Release date:2022-05-07 02:02 Export PDF Favorites Scan
        • Effect of different structural parameters of filter rod on mechanical properties of new vena cava filter

          The dynamic analysis of the implantation process of a new vena cava filter was carried out by finite element analysis method to reveal the influence of the angle, length, width and thickness of the filter rod on its mechanical properties and the inner wall of the blood vessel. The results showed that the high-stress and high-strain areas of the filter were mainly concentrated in the connection between the filter rod and the filter wire. With the increase of the angle of the filter rod, the maximum equivalent stress and the maximum elastic strain on the filter wall decreased, while the maximum equivalent stress on the vascular wall increased. With the increase of the length of the filter rod, the maximum equivalent stress and strain peak of the filter wall increased, but the maximum equivalent stress of the vessel wall decreased. With the increase of the width and thickness of the filter rod, the maximum equivalent stress of the filter wall, the maximum elastic strain and the maximum equivalent stress of the vessel wall all showed an upward trend. The static safety factor of all filter models was greater than 1, and the structure after implantation was safe and reliable. The results of this study are expected to provide a theoretical basis for the structural optimization and deformation mechanism of the new type vena cava filter.

          Release date:2020-10-20 05:56 Export PDF Favorites Scan
        • A simulation study with finite element model on the unequal loss of peripheral vision caused by acceleration

          An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (Gz), right-to-left (Gy), chest-to-back (Gx) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.

          Release date:2017-04-13 10:03 Export PDF Favorites Scan
        • Finite element analysis of effect of different treatment methods on vertebral stability of osteoporotic vertebral compression fractures

          Objective To investigate the effect of different treatment methods on the vertebral stability of osteoporotic vertebral compression fracture (OVCF) by finite element analysis. MethodsTen patients with thoracolumbar OVCF admitted between January 2020 and June 2021 were selected, 5 of whom underwent operation (operation group), 5 underwent conservative treatment (conservative treatment group). Another 5 healthy volunteers were selected as the control group. There was no significant difference in gender and age between groups (P>0.05). The operation group and the conservative treatment group received CT examination of the fractured vertebral body and adjacent segments before and after treatments, while the control group received CT examination of T12-L2. By importing CT data into Mimics 10.01 software, the finite element model was constructed. After comparing the finite element model of control group with the previous relevant literature measurement results to verify the validity, the spinal structural stress and range of motion (ROM) in each group under different conditions were measured. Results The three-dimensional finite element model was verified to be valid. There were significant differences in spinal structural stress after treatment between groups under different conditions (P<0.05). Before treatment, the ROMs of operation group and conservative treatment group under difference conditions were significantly lower than those of control group (P<0.05), and there was no difference between conservative treatment group and operation group (P>0.05). After treatment, the ROMs of the control group and the operation group were significantly higher than those of the conservative treatment group (P<0.05), and there was no significant difference between the operation group and the control group (P>0.05). Conclusion For patients with OVCF, the minimally invasive operation can achieve better results. Compared with conservative treatment, it can reduce the effect on spinal stability, and can be as a preferred treatment method, which is helpful to improve the prognosis of patients.

          Release date:2023-01-10 08:44 Export PDF Favorites Scan
        • Finite element simulation of stent implantation and its applications in the interventional planning for hemorrhagic cardio-cerebrovascular diseases

          Numerical simulation of stent deployment is very important to the surgical planning and risk assess of the interventional treatment for the cardio-cerebrovascular diseases. Our group developed a framework to deploy the braided stent and the stent graft virtually by finite element simulation. By using the framework, the whole process of the deployment of the flow diverter to treat a cerebral aneurysm was simulated, and the deformation of the parent artery and the distributions of the stress in the parent artery wall were investigated. The results provided some information to improve the intervention of cerebral aneurysm and optimize the design of the flow diverter. Furthermore, the whole process of the deployment of the stent graft to treat an aortic dissection was simulated, and the distributions of the stress in the aortic wall were investigated when the different oversize ratio of the stent graft was selected. The simulation results proved that the maximum stress located at the position where the bare metal ring touched the artery wall. The results also can be applied to improve the intervention of the aortic dissection and the design of the stent graft.

          Release date:2021-02-08 06:54 Export PDF Favorites Scan
        • Stress Analysis of Cervical Spine C4-C6 Under Frontal Impact Load

          In order to check the neck response and injury during motor vehicle accidents, we developed a detailed finite element model for human cervical spine C4-C6. This model consisted of cortical bone, cancellous bone, annulus, nucleus, ligaments and articular facet, and it also set up contact in the contacting parts for simulating the movement perfectly under frontal impact. This model could be used for stress and strain distribution after the frontal impact load was applied on this model. During the process of frontal impact, the most displacement simulated data were in the interval range of experimental data. The experimental results showed that this model for the human cervical spine C4-C6 simulated the movement under the frontal impact with fidelity, and reflected the impact dynamics response on the whole.

          Release date: Export PDF Favorites Scan
        9 pages Previous 1 2 3 ... 9 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜