ObjectiveTo suggest the importance of taking notice of oral chemotherapy drugs in cancer patients, and the importance of drug-use evaluation in patients with insufficient kidney functions, by reporting one death case caused by multiple organ failure because of myelosuppression after oral tegafur, gimeracil and oteracil potassium (S-1) capsules for 10 days in a patient with insufficient kidney functions. MethodsThrough the analysis of one patient who died of multiple organ failure due to degree-Ⅳ myelosuppression and the related literature review, we discussed the necessity of individualized administration of clinical chemotherapy. ResultsThe patient had grade-Ⅱ renal insufficiency before chemotherapy and did not undergo dihydropyrimidine dehydrogenase (DPYD) gene test. Myelosuppression occurred 10 days after oral chemotherapy drugs. The white blood cells, neutrophils and platelets decreased progressively, and then developed into degree-Ⅳ suppression. Finally the patient died of multiple organ failure. Conclusions Genetic variation and renal insufficiency may cause differences in drug metabolism. The reduced urinary excretion of guimet pyrimidine (CDHP), the inhibitors of dihydropyrimidine dehydrogenase which is the 5-fluorouracil (5-FU) metabolic enzyme, may lead to elevated plasma concentration of 5-FU, thereby increasing myelosuppression and other adverse reactions. If DPYD gene detection results show low enzyme activity, it can cause lethal toxicity through deceleration of 5-FU metabolism and high concentration of blood. DPYD gene dzetection should be performed if allowed, and individualized treatment plan should be formulated after comprehensive evaluation. The overall situation of the patients should be considered before treatment, and then individualized drugs should be administered.
To solve the problems of noise interference and edge signal weakness for the existing medical image, we used two-dimensional wavelet transform to process medical images. Combined the directivity of the image edges and the correlation of the wavelet coefficients, we proposed a medical image processing algorithm based on wavelet characteristics and edge blur detection. This algorithm improved noise reduction capabilities and the edge effect due to wavelet transformation and edge blur detection. The experimental results showed that directional correlation improved edge based on wavelet transform fuzzy algorithm could effectively reduce the noise signal in the medical image and save the image edge signal. It has the advantage of the high-definition and de-noising ability.
ObjectiveTo investigate a more convenient and safe sampling method for viral nucleic acid detection of coronavirus disease 2019.MethodsAn oropharyngeal swab and nasopharyngeal swab were simultaneously taken from 100 patients with coronavirus disease 2019 in a hospital in Wuhan. Then the efficacies of two sampling methods were compared on the positive rates of viral nucleic acid detection.ResultsThe positive rate for SARS-CoV-2 was 54% in oropharyngeal swabs, while 89% positive in nasopharyngeal swabs. There was a significant difference in the detection rate between oropharyngeal swab and nasopharyngeal swab (χ2=3.850 4, P=0.049 7).ConclusionsThe positive rate for nucleic acid testing from nasopharyngeal swabs are significantly better than that from oropharyngeal swabs. Therefore, sampling by nasopharyngeal swabs, rather than oropharyngeal swabs, should be chosen as the preferred virological screening method for patients with coronavirus disease 2019.
In this study, loop-mediated isothermal amplification (LAMP) assay in conjunction with calcein for visualized detection of Mycobacterium tuberculosis (MTB) was established. Firstly, four LAMP primers were designed according to the region of 16S rDNA sequences of MTB. Secondly, clinical sputum samples were collected, decontaminated and their DNA was extracted. Thirdly, standard MTB strains were used to evaluate the specificity and sensitivity of LAMP. At the same time, electrophoresis was used for products detection and calcein was used for visualized verification. At last, Chi-squared test function in SPSS 17.0 software was used for consistency evaluation of LAMP assay as compared with the gold standard (culture method). Results showed that there was no nonspecific amplification appeared in the specificity assay and the detection limit was 10 copies/tube in the sensitivity assay. In addition, visualized method by calcein had a comparable sensitivity with that of electrophoresis method. After evaluation of clinical practicability, the sensitivity of LAMP was calculated as 94.74% and the specificity was 90%, respectively. And Chi-squared test showed that LAMP and culture method had no statistic difference, and the two methods were in good consistency (P>0.05). In conclusion, LAMP assay introduced in our study has the characteristics of high efficiency and visualized detection so that this technique has great application prospects in the resource-limited environment, such as work field and primary care hospitals.
In order to solve the saturation distortion phenomenon of R component in fingertip video image, this paper proposes an iterative threshold segmentation algorithm, which adaptively generates the region to be detected for the R component, and extracts the human pulse signal by calculating the gray mean value of the region to be detected. The original pulse signal has baseline drift and high frequency noise. Combining with the characteristics of pulse signal, a zero phase digital filter is designed to filter out noise interference. Fingertip video images are collected on different smartphones, and the region to be detected is extracted by the algorithm proposed in this paper. Considering that the fingertip’s pressure will be different during each measurement, this paper makes a comparative analysis of pulse signals extracted under different pressures. In order to verify the accuracy of the algorithm proposed in this paper in heart rate detection, a comparative experiment of heart rate detection was conducted. The results show that the algorithm proposed in this paper can accurately extract human heart rate information and has certain portability, which provides certain theoretical help for further development of physiological monitoring application on smartphone platform.
Objective To observe the effect of BMSCs on the cardiac function in diabetes mellitus (DM) rats through injecting BMSCs into the ventricular wall of the diabetic rats and investigate its mechanism. Methods BMSCs isolated from male SD rats (3-4 months old) were cultured in vitro, and the cells at passage 5 underwent DAPI label ing. Thirty clean grade SD inbred strain male rats weighing about 250 g were randomized into the normal control group (group A), the DM group (group B), and the cell transplantation group (group C). The rats in groups B and C received high fat forage for 4 weeks and the intraperitoneal injection of 30 mg/kg streptozotocin to made the experimental model of type II DM. PBS and DAPI-labeledpassage 5 BMSCs (1 × 105/μL, 160 μL) were injected into the ventricular wall of the rats in groups B and C, respectively. After feeding those rats with high fat forage for another 8 weeks, the apoptosis of myocardial cells was detected by TUNEL, the cardiac function was evaluated with multi-channel physiology recorder, the myocardium APPL1 protein expression was detected by Western blot and immunohistochemistry test, and the NO content was detected by nitrate reductase method. Group C underwent all those tests 16 weeks after taking basic forage. Results In group A, the apoptosis rate was 6.14% ± 0.02%, the AAPL1 level was 2.79 ± 0.32, left ventricular -dP/dt (LV-dP/dt) was (613.27 ± 125.36) mm Hg/s (1 mm Hg=0.133 kPa), the left ventricular end-diastol ic pressure (LVEDP) was (10.06 ± 3.24) mm Hg, and the NO content was (91.54 ± 6.15) nmol/mL. In group B, the apoptosis rate was 45.71% ± 0.04%, the AAPL1 level 1.08 ± 0.24 decreased significantly when compared with group A, the LVdP/ dt was (437.58 ± 117.58) mm Hg/s, the LVEDP was (17.89 ± 2.35) mm Hg, and the NO content was (38.91±8.67) nmol/mL. In group C, the apoptosis rate was 27.43% ± 0.03%, the APPL1 expression level was 2.03 ± 0.22, the LV -dP/dt was (559.38 ± 97.37) mm Hg/ s, the LVEDP was (12.55 ± 2.87) mm Hg, and the NO content was (138.79 ± 7.23) nmol/ mL. For the above mentioned parameters, there was significant difference between group A and group B (P lt; 0.05), and between group B and group C (P lt; 0.05). Conclusion BMSCs transplantation can improve the cardiac function of diabetic rats. Its possible mechanismmay be related to the activation of APPL1 signaling pathway and the increase of NO content.
The dynamic electrocardiogram (ECG) collected by wearable devices is often corrupted by motion interference due to human activities. The frequency of the interference and the frequency of the ECG signal overlap with each other, which distorts and deforms the ECG signal, and then affects the accuracy of heart rate detection. In this paper, a heart rate detection method that using coarse graining technique was proposed. First, the ECG signal was preprocessed to remove the baseline drift and the high-frequency interference. Second, the motion-related high amplitude interference exceeding the preset threshold was suppressed by signal compression method. Third, the signal was coarse-grained by adaptive peak dilation and waveform reconstruction. Heart rate was calculated based on the frequency spectrum obtained from fast Fourier transformation. The performance of the method was compared with a wavelet transform based QRS feature extraction algorithm using ECG collected from 30 volunteers at rest and in different motion states. The results showed that the correlation coefficient between the calculated heart rate and the standard heart rate was 0.999, which was higher than the result of the wavelet transform method (r = 0.971). The accuracy of the proposed method was significantly higher than the wavelet transform method in all states, including resting (99.95% vs. 99.14%, P < 0.01), walking (100% vs. 97.26%, P < 0.01) and running (100% vs. 90.89%, P < 0.01). The absolute error [0 (0, 1) vs. 1 (0, 1), P < 0.05] and relative error [0 (0, 0.59) vs. 0.52 (0, 0.72), P < 0.05] of the proposed method were significantly lower than the wavelet transform method during running state. The method presented in this paper shows high accuracy and strong anti-interference ability, and is potentially used in wearable devices to realize real-time continuous heart rate monitoring in daily activities and exercise conditions.
In order to study the effect of light with different wavelengths on the motion behavior of carp robots, phototaxis experiment, anatomical experiment, light control experiment and speed measurement experiment were carried out in this study. Blue, green, yellow and red light with different wavelength were used to conduct phototaxis experiments on carp to observe their movement behavior. By dissecting the skull bones of the carp to determine the appropriate location to carry the light control device, we independently developed a light control carrying device which was suitable for any illumination intensity environment. The experiment of the light-controlled carp robots was carried out. The motion behavior of the carp robot was checked by using computer binocular stereo vision technology. The motion trajectory of the carp robot was tracked and obtained by applying kernel correlation filter (KCF) algorithm. The motion velocity of the carp robot at different wavelengths was calculated according to their motion trajectory. The results showed that carps’ sensitivity to different light changed from strong to weak in the order of blue, red, yellow and green, so that using light with different wavelengths to control the speed of the carp robot has certain laws to follow. A new method to avoid brain damage in carp robots control can be provided in this study.
ObjectiveTo investigate diagnosis, gene detection, and treatment principle of medullary thyroid carcinoma.Method The relevant literatures and guidelines about diagnosis and treatment of medullary thyroid carcinoma were summarized and analyzed retrospectively. Resultsmedullary thyroid carcinoma was given priority to surgical treatment. hereditary medullary cancer could be prophylactic thyroidectomy by the RET gene test results. advanced progressive medullary thyroid carcinoma, could be treated by palliative surgery, external radiotherapy, or systemic treatment with the tyrosine kinase inhibitor. ConclusionsPrognosis of medullary thyroid carcinoma is worse, and occurrence of early metastasis is easy. so the first operation should be thoroughgoing. and the operation timing of prophylactic total thyroidectomy for hereditary medullary cancer could be determined by the results of RET gene detection to achieving early cure.
Surface electromyography (sEMG) has been widely used in the study of clinical medicine, rehabilitation medicine, sports, etc., and its endpoints should be detected accurately before analyzing. However, endpoint detection is vulnerable to electrocardiogram (ECG) interference when the sEMG recorders are placed near the heart. In this paper, an endpoint-detection algorithm which is insensitive to ECG interference is proposed. In the algorithm, endpoints of sEMG are detected based on the short-time energy and short-time zero-crossing rates of sEMG. The thresholds of short-time energy and short-time zero-crossing rate are set according to the statistical difference of short-time zero-crossing rate between sEMG and ECG, and the statistical difference of short-time energy between sEMG and the background noise. Experiment results on the sEMG of rectus abdominis muscle demonstrate that the algorithm detects the endpoints of the sEMG with a high accuracy rate of 95.6%.