Objective To investigate the effect of carboxymethylated chitosan (CMCS) on the proliferation, cell cycle, and secretion of neurotrophic factors in cultured Schwann cells (SCs). Methods SCs were obtained from sciatic nerves of 20 Sprague Dawley rats (3-5 days old; male or female; weighing, 25-30 g) and cultured in vitro, SCs were identified and purified by immunofluorescence against S-100. The cell counting kit 8 (CCK-8) assay was used to determine the proliferation of SCs. The SCs were divided into 4 groups: 50 μg/mL CMCS (group B), 100 μg/mL CMCS (group C), 200 μg/mL CMCS (group D), and the same amount of PBS (group A) were added. The flow cytometry was used to analyze the cell cycle of SCs; the real-time quantitative PCR and Western blot analysis were used to detect the levels of never growth factor (NGF) and ciliary neurotrophic factor (CNTF) in cultured SCs induced by CMCS. Results The purity of cultured SCs was more than 90% by immunofluorescence against S-100; the CCK-8 results indicated that CMCS in concentrations of 10-1 000 μg/mL could promote the proliferation of SCs, especially in concentrations of 200 and 500 μg/mL (P lt; 0.01), but no significant difference was found between 200 and 500 μg/mL (P gt; 0.05). CMCS at a concentration of 200 μg/mL for 24 hours induced the highest proliferation, showing significant difference when compared with that at 0 hour (P lt; 0.01). The percentage of cells in phase S and the proliferation index were significantly higher in groups B, C, and D than in group A (P lt; 0.05), in groups C and D than in group B (P lt; 0.05); and there was no significant difference between group C and group D (P gt; 0.05). Real-time quantitative PCR and Western blot results showed that the levels of NGF and CNTF in groups B, C, and D were significantly higher than those in group A (P lt; 0.05), especially in group D. Conclusion CMCS can stimulate the proliferation, and induce the synthesis of neurotrophic factors in cultured SCs.
Objective To compare the growth and extracellular matrix biosynthesis of nucleus pulposus cells (NPCs)and bone marrow mesenchymal stem cells (BMSCs) in thermo-sensitive chitosan hydrogel and to choose seed cells for injectable tissue engineered nucleus pulposus. Methods NPCs were isolated and cultured from 3-week-old New Zealand rabbits (male or female, weighing 150-200 g). BMSCs were isolated and cultured from bone marrow of 1-month-old New Zealand rabbits (male or female, weighing 1.0-1.5 kg). The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium β glycerophosphate, and hydroxyethyl cellulose. Then, NPCs at the 2nd passage or BMSCs at the 3rd passage were mixed with chitosan hydrogel to prepare NPCs or BMSCs-chitosan hydrogel complex as injectable tissue engineered nucleus pulposus. The viabil ities of NPCs and BMSCs in the chitosan hydrogel were observed 2 days after compound culture. The shapes and distributions of NPCs and BMSCs on the scaffold were observed by scanning electron microscope (SEM) 1 week after compound culture. The histology and immunohistochemistry examination were performed. The expressions of aggrecan and collagen type II mRNA were analyzed by RT-PCR 3 weeks after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at37 (after 15 minutes) due to crossl inking reaction. Acridine orange/propidium iodide staining showed that the viabil ity rates of NPCs and BMSCs in chitosan hydrogel were above 90%. The SEM observation demonstrated that the NPCs and BMSCs distributed in the reticulate scaffold, with extracellular matrix on their surfaces. The results of HE, safranin O histology and immunohistochemistry staining confirmed that the NPCs and BMSCs in chitosan hydrogel were capable of producing extracellular matrix. RT-PCR results showed that the expressions of collagen type II and aggrecan mRNA were 0.564 ± 0.071 and 0.725 ± 0.046 in NPCs culture with chitosan hydrogel, and 0.713 ± 0.058 and 0.852 ± 0.076 in BMSCs culture with chitosan hydrogel; showing significant difference (P lt; 0.05). Conclusion The thermo-sensitive chitosan hydrogel has good cellular compatibil ity. BMSCs culture with chitosan hydrogel maintains better cell shape, prol iferation, and extracellular matrix biosynthesis than NPCs.
ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.
Objective To improve the flexibil ity and hemostatic properties of chitosan (CS)/carboxymethyl chitosan (CMCS) hemostatic membrane by using glycerol and etamsylate to modify CS/CMCS hemostatic membrane. To investigate themechanical properties and hemostatic capabil ity of modified CS/CMCS hemostatic membrane. Methods The 2% CS solution, 2% CMCS solution, 10%, 15%, 20%, 25%, 30% glycerol with or without 0.5% etamsylate were used to prepare CS/CMCS hemostatic membrane with or without etamsylate by solution casting according to ratio of 16 ∶ 4 ∶ 5. The tensile properties were evaluated by tensile test according to GB 13022-1991. Twenty venous incisions and five arterial incisions hemorrhage of 1 cm × 1 cm in rabbit ears were treated by CS/CMCS hemostatic membrane modified by 15% (group A) and 25% (group B) of glycerol, and a combination of them and 0.5% etamsylate (groups C and D). The bleeding time and blood loss were recorded. Results The pH of yellow CS/ CMCS hemostatic membrane with thickness of 30-50 μm was 3-4. The incorporation glycerol into CS/CMCS hemostatic membrane resulted in decreasing in tensile strength (7.6%-60.2%) and modulus (97%-99%). However, elongation at break and water content increased 5.7-11.6 times and 13%-125% markedly. CS/CMCS hemostatic membrane adhered to wound rapidly, absorbed water from blood and became curly. The bleeding time and blood loss of venous incisions were (70 ± 3) seconds and (117.2 ± 10.8) mg, (120 ± 10) seconds and (121.2 ± 8.3) mg, (52 ± 4) seconds and (98.8 ± 5.5) mg, and (63 ± 3) seconds and (90.3 ± 7.1) mg in groups A, B, C, and D, respectively; showing significant differences (P lt; 0.05) between groups A, B and groups C, D. The bleeding time and blood loss of arterial incision were (123 ± 10) seconds and (453.3 ± 30.0) mg in group C. Conclusion CS/CMCS hemostatic membrane modified by glycerol and etamsylate can improve the flexibil ity, and shorten the bleeding time.
Objective To investigate the improvement effects and mechanisms of composite chitosan (CS) hydrogel on traditional polypropylene (PP) mesh for repairing abdominal wall defects. Methods CS hydrogel was prepared via physical cross-linking and then combined with PP mesh to create a CS hydrogel/PP mesh composite. The internal structure and hydrophilicity of the composite were characterized using macroscopic observation, upright metallographic microscope, scanning electron microscopy, and water contact angle measurements. The performance of the composite (experimental group) in resisting cell adhesion and supporting cell infiltration was assessed through fibroblast (NIH-3T3) infiltration experiments and human umbilical vein endothelial cells (HUVECs) tube formation assays, and simple cells were used as control group. Finally, a bilateral abdominal wall defect model (1.5 cm×1.0 cm) was established in 18 Sprague Dawley rats aged 8-10 weeks, with the composite used on one side (experimental group) and PP mesh on the other side (control group). The effects on promoting wound healing, preventing adhesion, angiogenesis, and anti-inflammation were investigated through macroscopic observation, histological staining (HE and Masson staining), and immunohistochemical staining (CD31, CD68). Results The composite appeared as a pale yellow, transparent solid with a thickness of 2-3 mm, with the PP mesh securely encapsulated within the hydrogel. Scanning electron microscopy revealed that the hydrogel contained interconnected pores measuring 100-300 μm, forming a porous structure. Contact angle measurements indicated that CS hydrogel exhibited good hydrophilicity, while PP mesh was highly hydrophobic. In vitro cell culture experiments showed that DAPI staining indicated fewer positive cells in the experimental group after 1 day of culture, while the cells in control group covered the entire well plate. After 3 days of culture, the cells in experimental group were spherical and displayed uneven fluorescence, suggesting that the material could reduce cell adhesion while supporting cell infiltration. HUVECs tube formation experiments demonstrated an increase in cell numbers in experimental group with a trend towards tube formation, while cells in control group were sparsely distributed and showed no migration. In the rat abdominal wall defect repair experiment, results showed that after 1 week post-surgery, the experimental group had tissue and blood vessels infiltrating, and by 4 weeks, the integrity was well restored with significant regeneration of muscle and blood vessels, while the control group exhibited adhesions and incomplete healing. HE staining results indicated weaker cell infiltration in the experimental group, with cell density significantly higher than that of the control group at 2 and 4 weeks post-surgery (P<0.05). Masson staining revealed that collagen fibers in the experimental group were arranged neatly, with significantly increased collagen content at 2 weeks post-surgery (P<0.05), while collagen content was similar in both groups at 4 weeks (P>0.05). Immunohistochemical staining showed that CD31-positive cells were evenly distributed between muscle layers in the experimental group, whereas the control group exhibited notable defects. At 2 weeks after operation, the CD31-positive cell ratio was significantly higher than that in the control group (P<0.05); at 2 and 4 weeks after operation, the CD68-positive cell ratio in the experimental group was significantly lower than that in the control group (P<0.05). Conclusion CS hydrogel has a positive effect on preventing adhesions and promoting wound healing, exhibiting anti-inflammatory and pro-angiogenic properties during the healing process. This provides a promising strategy to address challenges related to abdominal adhesions and reconstruction.
To explore the effect of hydroxybutyl chitosan on the prevention of postoperative peritoneal adhesion in rats. Methods Ninety SD rats (half males and half females) weighing 250-280 g underwent laparotomy with subsequent cecal wall abrasion and peritoneal adhesion. Rats were randomized into 3 groups (n=30 per group): group A, injection of 2 mL hydroxybutyl chitosan solution (2%); group B, injection of 2 mL sodium hyaluronate solution(2%); group C, the abdomen of rat was exposed for 30 seconds and served as control group. The general condition of the rats was observed after operation. The rats were killed 2 and 4 weeks after operation, 15 rats per group at a time, to undergo gross and histologyobservation. The degree of adhesion was evaluated by double-bl ind method. The microstructure of injured electroscope cecal wall in groups A and C was observed with transmission electroscope 4 weeks after operation. Results All rats survived till the end of experiment. At 2 weeks after operation, the adhesion and the hyperplasia of fibrous connective tissue and collagen in groups A and B were sl ight while the adhesion in group C was serious with severe hyperplasia of fibrous connective tissue. According to the measurement classification by Nair histological grading, the difference between groups A and B and group C was significant (P lt; 0.05), while no significant difference was evident between group A and group B (P gt; 0.05). At 4 weeks after operation, the adhesion in group A was mild, and the hyperplasia of fibrous connective tissue and collagen were sl ight; the adhesion and the hyperplasia of fibrous connective tissue and collagen in group C were serious. The levels of group B were between group A and group C. The differences among three groups were significant (P lt; 0.05). Transmission electroscope showed inactive fibroblasts and loose thin collagen fibers in group A, and active fibroblasts and closely collagen fibers arranged in a disorderly manner in group C. Conclusion Hydroxybutyl chitosan can decrease the hyperplasia of fibrous connective tissue and inhibit the activity of fibroblasts significantly, and has a long-term role of preventing peritoneal adhesion.
Objective To investigate the ectopic bone formation of the chitosan/phosphonic chitosan sponge combined with human umbil ical cord mesenchymal stem cells (hUCMSCs) in vitro. Methods Phosphorous groups were introduced in chitosan molecules to prepare the phosphonic chitosan; 2% chitosan and phosphonic chitosan solutions were mixed at a volume ratio of 1 ∶ 1 and freeze-dried to build the complex sponge, and then was put in the simulated body fluid for biomimetic mineral ization in situ. The hUCMSCs were isolated by enzyme digestion method from human umbil ical cord and were cultured. The chitosan/phosphonic chitosan sponge was cultured with hUCMSCs at passage 3, and the cell-scaffoldcomposite was cultured in osteogenic medium. The growth and adhesion of the cells on the scaffolds were observed by l ight microscope and scanning electron microscope (SEM) at 1 and 2 weeks after culturing, respectively. The cell prol iferation was detected by MTT assay at 1, 2, 3, 4, 5, and 6 days, respectively. Bilateral back muscles defects were created on 40 New Zealand rabbits (3-4 months old, weighing 2.1-3.2 kg, male or female), which were divided into groups A, B, and C. In group A, cellscaffold composites were implanted into 40 right defects; in group B, the complex sponge was implanted into 20 left defects; and in group C, none was implanted into other 20 left defects. The gross and histological observations were made at 4 weeks postoperatively. Results The analysis results of phosphonic chitosan showed that the phosphorylation occurred mainly in the hydroxyl, and the proton type and chemical shifts intensity were conform to its chemical structure. The SEM results showed that the pores of the chitosan/phosphonic chitosan sponge were homogeneous, and the wall of the pore was thinner; the coating of calcium and phosphorus could be observed on the surface of the pore wall after mineral ized with crystal particles; the cells grew well on the surface of the chitosan/phosphonic chitosan sponge. The MTT assay showed that the chitosan/phosphonic chitosan sponge could not inhibit the prol iferation of hUCMSCs. The gross observation showed that the size and shape of the cell-scaffold composite remained intact and texture was toughened in group A, the size of the complex sponge gradually reducedin group B, and the muscle defects wound healed with a l ittle scar tissue in group C. The histological observation showed that part of the scaffold was absorbed and new blood vessels and new bone trabeculae formed in group A, the circular cavity and residual chitosan scaffolds were observed in group B, and the wound almost healed with a small amount of lymphocytes in group C. Conclusion The chitosan/phosphonic chitosan sponge has good biocompatibil ity, the tissue engineered bone by combining the hUCMSCs with chitosan/phosphonic chitosan sponge has the potential of the ectopic bone formation in rabbit.
Objective To extend its application in the field of bone repair by adding oxygen-carboxymethylated chitosan (O-CMC) and gentamicin for modification of the calcium sulfate cement (CSC). Methods The O-CMC/CSC was prepared by adding O-CMC with different concentrations (0.1wt%, 0.3wt%, 0.5wt%, 0.7wt%, and 1.0wt%) in the CSC liquid phase. The effect of O-CMC on the CSC was evaluated by testing the injectability, compressive strength, degradation rate, pH value, cytotoxicity and osteogenesis. After the optimal concentration of O-CMC was determined, gentamicin with different concentrations (0.5wt%, 1.5wt%, and 2.5wt%) was added in the O-CMC/CSC, and then the compressive strength and antibacterial properties were investigated. Results After adding O-CMC in the CSC liquid phase, the injection time of O-CMC/CSC was increased to more than 5 minutes; it significantly prolonged with increased concentration of O-CMC (P<0.05). The compressive strength of the modified bone cement was in the range of 11-18 MPa and it was the highest when the concentration of O-CMC was 0.5wt% (P<0.05). The degradation rate of O-CMC/CSC was not influenced obviously by O-CMC (P>0.05). The pH value was in the range of 7.2-7.4 and Ca2+ concentration was in the range of 6-8 mmol/L.In vitro mineralization experiment indicated that the induced mineralization ability of O-CMC/CSC was much higher than that of pure CSC. The 0.5wt% O-CMC/CSC had the best performance; the compressive strength of the composite bone cement was above 5 MPa after gentamicin was added, which had antibacterial effect. Conclusion O-CMC is able to effectively improve the injection, compressive strength, and osteogenic activity of CSC; in addition, antibacterial properties is obtained in the CSC after adding gentamicin.
Objective To investigate the feasibil ity of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Methods Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold wasmade of chitosan, disodium β-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viabil ity of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at 37 (15 minutes) due to crossl inking reaction. Acridine orange-propidiumiodide staining showed that the viabil ity rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 ± 0.064 and 0.832 ± 0.052, respectively,showing more strengths of producing matrix than that of monolayer culture (0.528 ± 0.039, 0.773 ± 0.046) with a significant difference (P lt; 0.05). Conclusion With good cellular compatibilities, the thermo-sensitive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion after compound culture, and may be a potential NP cells carrier for tissue engineered NP.
ObjectiveTo investigate the in vivo degradation and histocompatibility of modified chitosan based on conductive composite nerve conduit, so as to provide a new scaffold material for the construction of tissue engineered nerve.MethodsThe nano polypyrrole (PPy) was synthesized by microemulsion polymerization, blended with chitosan, and then formed conduit by injecting the mixed solution into a customized conduit formation model. After freeze-drying and deacidification, the nano PPy/chitosan composite conduit (CP conduit) was prepared. Then the CP conduits with different acetyl degree were resulted undergoing varying acetylation for 30, 60, and 90 minutes (CAP1, CAP2, CAP3 conduits). Fourier infrared absorption spectrum and scanning electron microscopy (SEM) were used to identify the conduits. And the conductivity was measured by four-probe conductometer. The above conduits were implanted after the subcutaneous fascial tunnels were made symmetrically on both sides of the back of 30 female Sprague Dawley rats. At 2, 4, 6, 8, 10, and 12 weeks after operation, the morphology, the microstructure, and the degradation rate were observed and measured to assess the in vivo degradation of conduits. HE staining and anti-macrophage immunofluorescence staining were performed to observe the histocompatibility in vivo.ResultsThe characteristic peaks of the amide Ⅱ band around 1 562 cm?1 appeared after being acetylated, indicating that the acetylation modification of chitosan was successful. There was no significant difference in conductivity between conduits (P>0.05). SEM observation showed that the surfaces of the conduits in all groups were similar with relatively smooth surface and compact structure. After the conduits were implanted into the rats, with the extension of time, all conduits were collapsed, especially on the CAP3 conduit. All conduits had different degrees of mass loss, and the higher the degree of acetylation, the greater the mass change (P<0.05). SEM observation showed that there were more pores at 12 weeks after implantation, and the pores showed an increasing trend as the degree of acetylation increased. Histological observation showed that there were more macrophages and lymphocytes infiltration in each group at the early stage. With the extension of implantation time, lymphocytes decreased, fibroblasts increased, and collagen fibers proliferated significantly. ConclusionThe modified chitosan basedon conductive composite nerve conduit made of nano-PPy/chitosan composite with different acetylation degrees has good biocompatibility, conductivity, and biodegradability correlated with acetylation degree in vivo, which provide a new scaffold material for the construction of tissue engineered nerve.