Objective To investigate the application value of three-dimensional (3-D) printing technology in the operation of distal tibia fracture involving epiphyseal plate injury for teenagers. Methods The retrospective analysis was conducted on the clinical data of 16 cases of children patients with distal tibia fracture involving epiphyseal plate injury undergoing the operation by using of 3-D printing technology between January 2014 and December 2015. There were 12 males and 4 females with an age of 9-14 years (mean, 12.8 years). The causes of injury included traffic accident injury in 9 cases, heavy pound injury in 3 cases, and sport injury in 4 cases. The time from injury to operation was 3-92 hours (mean, 25.8 hours). According to Salter-Harris typing standard, the typing for epiphyseal injury was classified as type Ⅱ in 11 cases, type Ⅲ in 4 cases, and type Ⅳ in 1 case. The thin slice CT scan on the affected limb was performed before operation, and the Mimics14.0 medical software was applied for the design and the 1∶1 fracture model was printed by the 3-D printer; the stimulation of operative reduction was made in the fracture model, and bone plate, Kirschner wire, and hollow screw with the appropriate size were chosen, then the complete operative approach and method were designed and the internal fixator regimen was chosen, then the practical operation was performed based on the preoperative design regimen. Results The operation time was 40-68 minutes (mean, 59.1 minutes); the intraoperative blood loss was 5-102 mL (mean, 35 mL); the intraoperative fluoroscopy times was 2-6 times (mean, 2.8 times). All the patiens were followed up 12-24 months (mean, 15 months). The fracture of 15 cases reached anatomic reduction, and 1 cases had no anatomic reduction with the displaced end less than 1 mm. All the fractures reached bony union with the healing time of 2-4 months (mean, 2.6 months). There was no deep vein thrombosis, premature epiphyseal closure and oblique, or uneven ankle surface occurred, and there was no complication such as osteomyelitis, varus or valgus of ankle joint, joint stiffness, traumatic arthritis. Helfet scores of ankle function were measured at 12 months after operation, the results were excellent in 15 cases and good in 1 case. The angulation of introversion and extroversion for the affected limb was (6.56±2.48)°, and the growth length was (4.44±2.31) mm, and there was no significant difference (t=0.086, P=0.932; t=0.392, P=0.697) when compared with the uninjured side [(6.50±1.51)°, (4.69±1.08) mm]. Conclusion As the assistive technology, 3-D printing technology has a certain clinical application value in improving the effectiveness of distal tibia fracture involving epiphyseal plate injury.
ObjectiveTo manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties.MethodsFirst, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope.ResultsAccording to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold (P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] (t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group (P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold.ConclusionPCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.
ObjectiveTo explore a new method of treating serious tibiofibula comminuted fracture by using three-dimensional (3-D) printing personalized external fixator. MethodsIn April 2015, a male patient (aged 18 years with a height of 171 cm and a weight of 67 kg) with left tibiofibula comminuted fracture was included in the study. Computer-assisted reduction technique combined with 3-D printing was used to develop a customised personalized external fixator for fracture reduction. The effectiveness was observed. ResultsThe operation time was about 10 minutes without fluoroscopy, and successful reduction was obtained. The patient had equal limb length after operation. X-ray films showed that the posterior angulation of distal fracture was corrected 37°, and the eversion angle was corrected 4°. The tibial fractures had good paraposition or alignment, and the lower limb force line was corrected completely. No new fracture displacement occurred. The clinical healing time of fracture was 3.5 months and the bone union was achieved after 8 months. The function of affected limb recovered well after operation. ConclusionA personalized external fixator for serious tibiofibula comminuted fracture reduction made by 3-D printing technique has the merits of easy manipulation, high individuation, accurate reduction, stable fixation, and no need of fluoroscopy.
ObjectiveTo explore the biomechanical characteristics and clinical application effects of three-dimensional (3D) printed osteotomy guide plate combined with Ilizarov technique in the treatment of rigid clubfoot. Methods A retrospective analysis was performed on the clinical data of 11 patients with rigid clubfoot who met the inclusion criteria and were admitted between January 2019 and December 2024. There were 6 males and 5 females, aged 21-60 years with an average of 43.2 years. Among them, 5 cases were untreated congenital rigid clubfoot, 4 cases were recurrent rigid clubfoot after previous treatment, and 2 cases were rigid clubfoot due to disease sequelae. All 11 patients first received slow distraction using Ilizarov technique combined with circular external fixator until the force lines of the foot and ankle joint were basically normal. Then, 1 male patient aged 24 years was selected, and CT scanning was used to obtain imaging data of the ankle joint and foot. A 3D finite element model was established and validated using the plantar stress distribution nephogram of the patient. After validation, the biomechanical changes of the tibiotalar joint under the same load were simulated after triple arthrodesis and fixation. The optimal correction angle of the hindfoot was determined to fabricate 3D-printed osteotomy guide plates, and all 11 patients underwent triple arthrodesis using these guide plates. The functional recovery was evaluated by comparing the American Orthopaedic Foot and Ankle Society (AOFAS) score, International Clubfoot Study Group (ICFSG) score, and 36-Item Short Form Survey (SF-36) score before and after operation. Results Finite element analysis showed that the maximum peak von Mises stress of the tibiotalar joint was at hindfoot varus 3° and the minimum at valgus 6°; the maximum peak von Mises stress of the 3 naviculocuneiform joints under various conditions appeared at lateral naviculocuneiform joint before operation, and the minimum appeared at lateral naviculocuneiform joint at neutral position 0°; the maximum peak von Mises stress of the 5 tarsometatarsal joints under various conditions appeared at the 2nd tarsometatarsal joint at hindfoot neutral position 0°, and the minimum appeared at the 1st tarsometatarsal joint at valgus 6°. Clinical application results showed that the characteristics of clubfoot deformity observed during operation were consistent with the preoperative 3D reconstruction model. All 11 patients were followed up 8-24 months with an average of 13.1 months. One patient had postoperative incision exudation, which healed after dressing change; the remaining patients had good incision healing. All patients achieved good healing of the osteotomy segments, with a healing time of 3-6 months and an average of 4.1 months. At last follow-up, the AOFAS score, SF-36 score, and ICFSG score significantly improved when compared with those before operation (P<0.05). ConclusionThe 3D-printed osteotomy guide plate combined with Ilizarov technique has favorable biomechanical advantages in the treatment of rigid clubfoot, with significant clinical application effects. It can effectively improve the foot function of patients and achieve precise and personalized treatment.
Objective To review the current research progress of three-dimensional (3-D) printing technique in foot and ankle surgery. Methods Recent literature associated with the clinical application of 3-D printing technique in the field of medicine, especially in foot and ankle surgery was reviewed, summarized, and analyzed. Results At present, 3-D printing technique has been applied in foot and ankle fracture, segmental bone defect, orthosis, corrective surgery, reparative and reconstructive surgery which showed satisfactory effectiveness. Currently, there are no randomized controlled trials and the medium to long term follow-up is necessary. Conclusion The printing materials, time, cost, medical ethics, and multi-disciplinary team restricted the application of 3-D printing technique, but it is still a promising technique in foot and ankle surgery.
Objective To evaluate the effectiveness of total knee arthroplasty (TKA) using three-dimensional (3D) printing technology for knee osteoarthritis (KOA) accompanied with extra-articular deformity. Methods Between March 2013 and December 2015, 15 patients (18 knees) with extra-articular deformity and KOA underwent TKA. There were 6 males (6 knees) and 9 females (12 knees), aged 55-70 years (mean, 60.2 years). The mean disease duration was 10.8 years (range, 7-15 years). The unilateral knee was involved in 12 cases and bilateral knees in 3 cases. The clinical score was 57.44±1.06 and the functional score was 60.88±1.26 of Knee Society Score (KSS). The range of motion of the knee joint was (72.22±0.18)°. The deviation of mechanical axis of lower limb was (18.89±0.92)° preoperatively. There were 8 cases (10 knees) with extra-articular femoral deformity, 5 cases (5 knees) with extra-articular tibial deformity, and 2 cases (3 knees) with extra-articular femoral and tibial deformities. Bone models and the navigation templates were printed and the operation plans were designed using 3D printing technology. The right knee joint prostheses were chosen. Results The operation time was 65-100 minutes (mean, 75.6 minutes). The bleeding volume was 50-150 mL (mean, 90.2 mL). There was no poor incision healing, infection, or deep venous thrombosis after operation. All patients were followed up 12- 30 months (mean, 22 months). Prostheses were located in the right place, and no sign of loosening or subsidence was observed by X-ray examination. At last follow-up, the deviation of mechanical axis of lower limb was (2.00±0.29)°, showing significant difference when compared with preoperative one (t=13.120, P=0.007). The KSS clinical score was 87.50±0.88 and function score was 81.94±1.41, showing significant differences when compared with preoperative ones (t=27.553, P=0.000; t=35.551, P=0.000). The range of motion of knee was (101.94±1.42)°, showing significant difference when compared with preoperative one (t=31.633, P=0.000). Conclusion For KOA accompanied with extra-articular deformity, TKA using 3D printing technology has advantages such as individualized treatment, reducing the difficulty of operation, and achieving the satisfactory function.
Objective To analyze the short-term effectiveness and safety of personalized three-dimensional (3D) printed customized prostheses in severe Paprosky type Ⅲ acetabular bone defects. Methods A retrospective analysis was conducted on 8 patients with severe Paprosky type Ⅲ acetabular bone defects and met the selection criteria between January 2023 and June 2024. There were 3 males and 5 females, with an average age of 64.6 years ranged from 56 to 73 years. All primary replacement prostheses were non-cemented, including 1 ceramic-ceramic interface, 1 ceramic-polyethylene interface, and 6 metal-polyethylene interfaces. The time from the primary replacement to the revision was 4 days to 18 years. The reasons for revision were aseptic loosening in 5 cases, revision after exclusion in 2 cases, and repeated dislocation in 1 case. The preoperative Harris score was 39.5±3.7 and the visual analogue scale (VAS) score was 7.1±0.8. The operation time, intraoperative blood loss, hospital stay, and complications were recorded. The hip function was evaluated by Harris score, and the degree of pain was evaluated by VAS score. The acetabular cup abduction angle, anteversion angle, rotational center height, greater trochanter height, and femoral offset were measured on X-ray film. Results The operation time was 95-223 minutes, with an average of 151.13 minutes. The intraoperative blood loss was 600-3 500 mL, with an average of 1 250.00 mL. The hospital stay was 13-20 days, with an average of 16.88 days. All 8 patients were followed up 2-12 months, with an average of 6.4 months. One patient had poor wound healing after operation, which healed well after active symptomatic treatment. One patient had lower limb intermuscular vein thrombosis, but no thrombosis was found at last follow-up. No serious complications such as aseptic loosening, infection, dislocation, and periprosthetic fracture occurred during the follow-up. At last follow-up, the Harris score was 72.0±6.2 and the VAS score was 1.8±0.7, which were significantly different from those before operation (t=?12.011, P<0.001; t=16.595, P<0.001). On the second day after operation, the acetabular cup abduction angle ranged from 40° to 49°, with an average of 44.18°, and the acetabular cup anteversion angle ranged from 19° to 26°, with an average of 21.36°, which were within the “Lewinneck safety zone”. There was no significant difference in the rotational center height, greater trochanter height, and femoral offset between the healthy side and the affected side (P>0.05). ConclusionThe use of personalized 3D printed customized prostheses for the reconstruction of severe Paprosky type Ⅲ acetabular bone defects can alleviate pain and enhances hip joint function, and have good postoperative prosthesis position, without serious complications and have good safety.
With the development of three-dimensional (3D) printing technology, more and more researches have focused on its application in the region of intervertebral fusion materials; the prospects are worth looking forward to. This article reviews the researches about 3D printing technology in spinal implants, and summarizes the materials and printing technology applied in the field of spinal interbody fusion, and the shortcomings in the current research and application. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal interbodies will be developed and used clinically.
With the developing of three-dimensional (3D) printing technology, it is widely used in the treatment of bone tumors in the clinical orthopedics. Because of the great individual differences in the location of bone tumor, resection and reconstruction are difficult. Based on 3D printing technology, the 3D models can be prepared to show the anatomical part of the disease, so that the surgeons can create a patient-specific operational plans based on better understand the local conditions. At the same time, preoperative simulation can also be carried out for complex operations and patient-specific prostheses can be further designed and prepared according to the location and size of tumor, which may have more advantages in adaptability. In this paper, the domestic and international research progress of 3D printing technology in the treatment of limb bone tumors in recent years were reviewed and summarized.
Objective A prospective study was conducted to investigate the feasibility and effectiveness of three-dimensional printed in vitro guide plates assisted hip arthroscopy in the treatment of Cam-type femoroacetabular impingement (FAI). Methods The clinical data of 25 patients with Cam-type FAI who met the selection criteria between December 2016 and September 2022 were collected. There were 13 males and 12 females with an average age of 42 years (range, 19-66 years). The disease duration ranged from 3 to 120 months, with an average of 22.2 months. The preoperative range of internal rotation-external rotation was (28.70±4.50)°, α angle was (69.04±0.99)°, visual analogue scale (VAS) score was 6.5±0.2, and modified Harris hip score (HHS) was 50.5±0.7. All patients were treated with hip arthroscopy assisted by three-dimensional printed in vitro guide plate. The occurrence of complications was observed postoperatively, α angle of the affected hip joint was measured on Dunn X-ray film, and the glenoid labrum injury was observed by MRI. The percentage of overlap between the Cam plasty area and the preoperative simulated grinding area was calculated by three-dimensional CT+reconstruction. The effectiveness was evaluated by VAS score and modified HHS score. ResultsPostoperative dorsalis pedis numbness occurred in 1 case, and the symptoms disappeared after 1 month of conventional drug treatment such as neurotrophy. Two cases of perineal skin injury occurred, and healed after symptomatic treatment. There was no male erectile dysfunction, deep incision infection, pulmonary embolism, or other serious complications occurred. The percentage of overlap between the Cam plasty area and the preoperative simulated grinding area was 81.6%-95.3%, with an average of 89.8%. All 25 patients were followed up 6-12 months, with an average of 8 months. At last follow-up, the range of internal rotation-external rotation was (40.10±2.98)°, α angle was (43.72±0.84)°, VAS score was 1.8±0.2, and the modified HHS score was 72.1±1.3, which significantly improved when compared with preoperative ones (P<0.05). ConclusionThe treatment of Cam-type FAI with three-dimensional printed in vitro guide plates assisted hip arthroscopy is safe and feasible, and can achieve good effectiveness.