• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Three-dimension" 138 results
        • Assessment of Liver Perfusion in Hepatitis Pregnant Women by Three-dimensinal-sonography Power Doppler Vascular Indexes

          ObjectiveTo evaluate liver perfusion in pregnant women with hepatitis between 13 and 41 weeks of gestation by three-dimensional color power Doppler angiography (3D-CPA) vascular indexes. MethodsThis study involved 73 pregnant women with hepatitis and 44 healthy pregnant women who had the pregnancy examination between February 2012 and June 2013. We sampled in the area which was near the right lobe of the pregnant women liver's portal vein branch, and obtained the vascularization index (VI), flow index (FI) and vascularization flow index (VFI) via the virtual organ computer-aided analysis (VOCAL) method. Then, we compared the liver perfusion differences between the pregnant women with hepatitis and healthy pregnant women. ResultsThe hepatic flow indexes obtained by 3D-CPA were significantly different between the HBV-DNA viral load and the control groups. The cutoff values of the three vascular indexes of patients with hepatitis with HBV-DNA viral load and the healthy pregnant women were respectively VI=8.760 (P<3×10-4); FI=22.180 (P<6×10-7); and VFI=1.575 (P<3×10-5). ConclusionApplication of the 3D-CPA on liver perfusion may differentiate pregnant women with hepatitis B from normal ones, thus offer a support for clinical prevention and treatment for pregnant women with hepatitis B.

          Release date: Export PDF Favorites Scan
        • RECENT DEVELOPMENT OF COMPUTER-AIDED TISSUE ENGINEERING

          Objective To introduce the recent advances of the application of computer technology in tissue engineering. Methods The recent original articlesrelated to computer technology, medical image technology, computer-aided design, the advanced manufacture technology were summarized and systematically analyzed.Results Computer-aided tissue engineering is a new fieldon tissue engineering. It is the future direction of tissue engineering study. This article reviews recent development of medical CT/MRI scanning, three-dimensional reconstruction, anatomical modeling, computeraided design, computer-aided manufacturing, rapid prototyping, RP manufacturing of tissue engineering scaffolds and computeraided implantation.Conclusion Computer-aided tissue engineering can be used in scaffolds design and fabrication, computer-aided artificial tissue implantation. It is a new field on tissue engineering. 

          Release date:2016-09-01 09:26 Export PDF Favorites Scan
        • A BIOMECHANICAL STUDY OF STABILITY OF ATLANTOAXIAL JUNCTION FIXATION WITH ANTERIORAPPROACH SCREW FIXATION THROUGH C2 VERTEBRAL BODY TO C1 LATERAL MASS AND GALLIE’STECHNIQUE

          【Abstract】 Objective To determine the three-dimensional stabil ity of atlantoaxial reconstruction withanterior approach screw fixation through C2 vertebral body to C1 lateral mass and Gall ie’s technique (ASMG) for C1,2instabil ity. Methods Twenty-five human cadaveric specimens (C0-3 ) were divided randomly into 5 groups (n=5). Thethree-dimensional ranges of motion C1 relative to C2 were measured under the five different conditions:the intact state group (group A), type II odontoid fracture group (group B), posterior C1,2 transarticular screw fixation group (group C), ASM group (group D) and ASMG group (group E). The three-dimensional ranges of motions C1 relative to C2 by loading ± 1.5 Nm were measured under the six conditions of flexion/extension, left/right lateral bending, and left/right axial rotation. The obtained data was statistically analyzed. Results In each group, the three-dimensional ranges of motion C1 relative to C2 under the six conditions of flexion/extension, left/right lateral bending, and left/right axial rotation were as follows: in group A (8.10 ± 1.08), (8.49 ± 0.82), (4.79 ± 0.47), (4.93 ± 0.34), (28.20 ± 0.64), (29.30 ± 0.84)°; in group B (13.60 ± 1.25), (13.80 ± 0.77), (9.64 ± 0.53), (9.23 ± 0.41), (34.90 ± 0.93), (34.90 ± 1.30)°; in group C (1.62 ± 0.10), (1.90 ± 0.34), (1.25 ± 0.13), (1.37 ± 0.28), (0.97 ± 0.14), (1.01 ± 0.17)°; in group D (2.03 ± 0.26), (2.34 ± 0.49), (1.54 ± 0.22), (1.53 ± 0.30), (0.80 ± 0.35), (0.76 ± 0.30)°; in group E (0.35 ± 0.12), (0.56 ± 0.34), (0.44 ± 0.15), (0.55 ± 0.16), (0.43 ± 0.07), (0.29 ± 0.06)°. Under the six conditions, there were generally significant differences between group A and other four groups, and between group B and groups C, D and E (P lt; 0.001), and between group E and groups C, D in flexion/ extension and left/right lateral bending (P lt; 0.05). There was no significant difference between group E and groups C, D in left/right axial rotation (P gt; 0.05). Conclusion In vivo biomechanical studies show that ASMG operation has unique superiority in the reconstruction of the atlantoaxial stabil ity, especially in controll ing stabil ity of flexion/extension and left/right lateral bending, and thus it ensures successful fusion of the implanted bone. It is arel iable surgical choice for the treatment of the obsolete instabil ity or dislocation of C1, 2 joint.

          Release date:2016-09-01 09:12 Export PDF Favorites Scan
        • Application of Three-Dimensional Reconstruction in Preoperative Evaluation of Hepatic Alveolar Echinococcosis

          ObjectiveTo explore potential value of three-dimensional reconstruction technique for preoperative evaluation of hepatic alveolar echinococcosis. MethodsTwenty-one cases of hepatic alveolar echinococcosis proved by postoperative pathological examination in Affiliated Hospital of Qinghai University from October 2013 to March 2014 were analyzed retrospectively. The three periods of patients’ liver dynamic thin layerCTscan images were collected and imported in three-dimensional reconstruction software by DICOM format. The volume of the virtual resected liver tissue was calculated by software, and then was compared with the actual resected liver tissue volume. ResultsThe resected liver volume was (761.94±505.77) mL and (756.19±501.78) mL in the virtual surgery and in the veritable surgery, respectively. The proportion of resected liver in the total liver was (39.27±18.75)% and (38.95±16.99)% in the virtual surgery and in the veritable surgery, respectively. The resected liver volume had no significant difference between the virtual surgery and veritable surgery (P>0.05), which a positive relation (r=0.989, P<0.001). ConclusionThe limited preliminary data in this study show that three-dimensional reconstruction technique and virtual planning system for surgery could accurately guide resection of lesion and provide preoperative guidance of accurate liver resection for hepatic alveolar echinococcosis.

          Release date: Export PDF Favorites Scan
        • DWI Combined with 3D-VIBE in Evaluating Metastatic Lymph Nodes Secondary to Hilar Cholangiocarcinoma

          ObjectiveTo investigate the value of diffusion weighted imaging (DWI) combined with three-dimensional volumetric interpolated breath-hold examination (3D-VIBE) in evaluating metastatic lymph nodes secondary to hilar cholangiocarcinoma. MethodsFrom July 2009 to March 2011, DWI examination was performed in 37 patients with hilar cholangiocarcinoma, which was compared with 3D-VIBE sequences. The morphological characteristics and distribution were analyzed for metastatic and nonmetastatic lymph nodes. Signal intensity (SI) was measured on DWI images and apparent diffusion coefficient (ADC) was calculated for each lymph node. The SI of lymph nodes (SILN) and liver (SIliver) were also measured and the ratio of SI was calculated. The ADC and the ratio of SI were compared between metastatic and nonmetastatic lymph nodes. ResultsThere were fifty-nine groups of lymph nodes in 37 patients with hilar cholangiocarcinoma, fifty-one groups were revealed in both DWI and 3D-VIBE sequences, and eight groups were only demonstrated in one sequence (P=0.070). The short diameters were (1.05±0.42) cm and (0.78±0.22) cm on 3D-VIBE images for metastatic and nonmetastatic lymph nodes, respectively (P=0.030). The ADC value in metastatic lymph nodes was (1.64±0.3)×10-3 mm2/s, which was significantly lower than that in nonmetastatic lymph nodes 〔(2.28±0.79)×10-3 mm2/s〕 on DWI images (P=0.033). There were no significant differences in SILN/SIliver between metastatic and nonmetastatic lymph nodes on images of portal venous phase and 3 min delayed contrast-enhanced phase. ConclusionsDifferences of ADC and short diameter can provide valuable information to differentiate metastatic lymph nodes with nonmetastatic lymph nodes. When combined with 3D-VIBE sequence, DWI is more effective in evaluating metastatic lymph nodes secondary to hilar cholangiocarcinoma.

          Release date:2016-09-08 10:41 Export PDF Favorites Scan
        • Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells

          ObjectiveTo prepare dopamine modified and cartilage derived morphogenetic protein 1 (CDMP1) laden polycaprolactone-hydroxyapatite (PCL-HA) composite scaffolds by three-dimensional (3D) printing and evaluate the effect of 3D scaffolds on in vitro chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodsA dimensional porous PCL-HA scaffold was fabricated by 3D printing. Dopamine was used to modify the surface of PCL-HA and then CDMP-1 was loaded into scaffolds. The surface microstructure was observed by scanning electron microscope (SEM) and porosity and water static contact angle were also detected. The cytological experiment in vitro were randomly divided into 3 groups: group A (PCL-HA scaffolds), group B (dopamine modified PCL-HA scaffolds), and group C (dopamine modified and CDMP-1 laden PCL-HA scaffolds). The hBMSCs were seeded into three scaffolds, in chondrogenic culture conditions, the cell adhesive rate, the cell proliferation (MTT assay), and cell activity (Live-Dead staining) were analyzed; and the gene expressions of collagen type Ⅱ and Aggrecan were detected by real-time fluorescent quantitative PCR.ResultsThe scaffolds in 3 groups were all showed a cross-linked and pore interconnected with pore size of 400–500 μm, porosity of 56%, and fiber orientation of 0°/90°. For dopamine modification, the scaffolds in groups B and C were dark brown while in group A was white. Similarly, water static contact angle was from 76° of group A to 0° of groups B and C. After cultured for 24 hours, the cell adhesion rate of groups A, B, and C was 34.3%±3.5%, 48.3%±1.5%, and 57.4%±2.5% respectively, showing significant differences between groups (P<0.05). Live/Dead staining showed good cell activity of cells in 3 groups. MTT test showed that hBMSCs proliferated well in 3 groups and the absorbance (A) value was increased with time. The A value in group C was significantly higher than that in groups B and A, and in group B than in group A after cultured for 4, 7, 14, and 21 days, all showing significant differences (P<0.05). The mRNA relative expression of collagen type Ⅱ and Aggrecan increased gradually with time in 3 groups. The mRNA relative expression of collagen type Ⅱafter cultured for 7, 14, and 21 days, and the mRNA relative expression of Aggrecan after cultured for 14 and 21 days in group C were significantly higher than those in groups A and B, and in group B than in group A, all showing significant differences (P<0.05).ConclusionCo-culture of dopamine modified and CDMP1 laden PCL-HA scaffolds and hBMSCs in vitro can promote hBMSCs’ adhesion, proliferation, and chondrogenic differentiation.

          Release date:2018-02-07 03:21 Export PDF Favorites Scan
        • ACCURACY STUDY ON PREOPERATIVE MEASUREMENT OF PEDICLE SCREW FIXATION FOR THORACOLUMBAR VERTEBRA IN SPINAL VIRTUAL SURGERY SYSTEM

          Objective To employ spinal virtual surgery system (SVSS) for preoperative planning of thoracolumbar pedicle screw fixation, and to establ ish the measurement method for pedicle screw-related parameters. Methods Eight thoracicand lumbar spine specimens (T11-L3) were selected. First of all, SVSS was used for the preoperative planning of pedicle screw and the parameters of both sides of pedicle were measured in every vertebral segment, including angle of axial view (Aa), angle of sagittal view (As), x-direction entrance (XE), total pedicle length of axial view (TLa), total pedicle length of sagittal view (TLs), pedicle height (PH), pedicle width (PW), and pedicle spongy width (PSW). Then the corresponding parameters of the right and left pedicle screws of the specimens were measured actually. Finally, its accuracy was verified by comparing the data by virtual measurement and actual measurement. Results There was no significant difference in the parameters of virtual measurement (Aa, As, TLa, TLs, XE, PW, PSW, and PH) and actual measurement (Aa, As, TLa, XE, PW, PSW, and PH) between the right and left sides (P gt; 0.05). Except XE of the L3 vertebral segment and PSW of T11 and T12 vertebral segments (P lt; 0.05), the differences in other parameters of other segments were not significant (P gt; 0.05). Conclusion After statistical analysis and comparison, the feasibil ity of preoperative planning of thoracolumbar pedicle screw fixation and the accuracy of the measurement of the SVSS is verified.

          Release date:2016-08-31 05:43 Export PDF Favorites Scan
        • Dosimetric Comparison among Volumetric-modulated Arc Therapy, Intensity-modulated Radiotherapy and Three-dimensional Conformal Radiotherapy as Adjuvant Radiotherapy for Cervical Cancer

          ObjectiveTo compare the dosimetric differences among the double-arc volumetric-modulated arc therapy (VMAT), 7 field intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3D-CRT) techniques in treatment planning for cervical cancer as adjuvant radiotherapy. MethodFifteen patients who underwent adjuvant chemotherapy for cervical cancer between March 1st and September 30th, 2013 were chosen to be our study subjects through random sampling. Under Pinnacle 9.2 planning system, the same CT image was designed through three different techniques:VMAT, IMRT and 3D-CRT. We then compared target zone fitness index, evenness index, D98%, D2%, D50% among those different techniques. Monitor unit (MU) and treatment time were also analyzed. ResultsThree techniques showed similar target dose coverage. The IMRT and VMAT plans achieved better target dose conformity, which reduced the V20 of the pelvic, the V50 of the rectum and bladder, as well as the V40/50 of the small intestine (P<0.05). The VMAT technique showed few dosimetric advantages over the IMRT technique. VMAT technique had the advantages of less MU (P>0.05) and shorter overall treatment time (P<0.01) compared with IMRT technique. ConclusionsThe IMRT and VMAT plans achieve similar dose distribution to the target, and are superior to the 3D-CRT plans, in adjuvant radiotherapy for cervical cancer. VMAT technique has the advantages of less MU and shorter overall treatment time.

          Release date: Export PDF Favorites Scan
        • VALIDATION STUDY ON PRECISION OF DIGITIZED CUSTOM-MADE RADIAL HEAD PROSTHESIS BY THREE-DIMENSIONAL VISUALIZATION OF VIRTUAL SURGERY

          Objective To study digitize design of custom-made radial head prosthesis and to verify its matching precision by the surgery of preoperative three-dimensional (3-D) virtual replacement. Methods Six healthy adult volunteers (3 males and 3 females, aged 25-55 years with an average of 33 years) received slice scan of bilateral elbow by Speed Light 16-slice spiral CT. The CT Dicom data were imported into Mimics 10.0 software individually for 3-D reconstruction image, and the left proximal radial 3-D image was extracted, the mirror of the image was generated and it was split into 2 pieces: the head and the neck. The internal diameter and the length of the radial neck were obtained by Mimics 10.0 software measurement tools. In Geomagic Studio 12 software, the radial head was simulated to cover the cartilage surface (1 mm thickness) and generated to an entity. In UG NX 8.0 software, the stem of prosthesis was designed according to the parameters above and assembled head entity. Each custom-made prosthesis was performed and verified its matching precision by the surgery of preoperative 3-D virtual replacement. Results Comparing the morphology of 6 digitize custom-made prostheses with ipsilateral radial heads by the 3-D virtual surgery, the error was less than 1 mm. The radial head prosthesis design on basis of the contralateral anatomy was verified excellent matching. Conclusion The 3-D virtual surgery test and the digitized custom-made radial head prosthesis will be available for clinical accurate replacement.

          Release date:2016-08-31 04:12 Export PDF Favorites Scan
        • Three-dimensional printed 316L stainless steel cardiovascular stent’s electrolytic polishing and its mechanical properties

          The interventional therapy of vascular stent implantation is a popular treatment method for cardiovascular stenosis and blockage. However, traditional stent manufacturing methods such as laser cutting are complex and cannot easily manufacture complex structures such as bifurcated stents, while three-dimensional (3D) printing technology provides a new method for manufacturing stents with complex structure and personalized designs. In this paper, a cardiovascular stent was designed, and printed using selective laser melting technology and 316L stainless steel powder of 0?10 μm size. Electrolytic polishing was performed to improve the surface quality of the printed vascular stent, and the expansion behavior of the polished stent was assessed by balloon inflation. The results showed that the newly designed cardiovascular stent could be manufactured by 3D printing technology. Electrolytic polishing removed the attached powder and reduced the surface roughness Ra from 1.36 μm to 0.82 μm. The axial shortening rate of the polished bracket was 4.23% when the outside diameter was expanded from 2.42 mm to 3.63 mm under the pressure of the balloon, and the radial rebound rate was 2.48% after unloading. The radial force of polished stent was 8.32 N. The 3D printed vascular stent can remove the surface powder through electrolytic polishing to improve the surface quality, and show good dilatation performance and radial support performance, which provides a reference for the practical application of 3D printed vascular stent.

          Release date:2023-08-23 02:45 Export PDF Favorites Scan
        14 pages Previous 1 2 3 ... 14 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜