• <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
      <b id="1ykh9"><small id="1ykh9"></small></b>
    1. <b id="1ykh9"></b>

      1. <button id="1ykh9"></button>
        <video id="1ykh9"></video>
      2. west china medical publishers
        Keyword
        • Title
        • Author
        • Keyword
        • Abstract
        Advance search
        Advance search

        Search

        find Keyword "Noninvasive positive pressure ventilation" 20 results
        • Noninvasive Positive Pressure Ventilation in Acute Lung Injury and Acute Respiratory Distress Syndrome:A Randomized Controlled Study

          Objective To evaluate the efficiency and associated factors of noninvasive positive pressure ventilation( NPPV) in the treatment of acute lung injury( ALI) and acute respiratory distress syndrome( ARDS) .Methods Twenty-eight patients who fulfilled the criteria for ALI/ARDS were enrolled in the study. The patients were randomized to receive either noninvasive positive pressure ventilation( NPPV group) or oxygen therapy through a Venturi mask( control group) . All patients were closely observed and evaluated during observation period in order to determine if the patients meet the preset intubation criteria and the associated risk factors. Results The success rate in avoiding intubation in the NPPV group was 66. 7%( 10/15) , which was significantly lower than that in the control group ( 33. 3% vs. 86. 4% , P = 0. 009) . However, there was no significant difference in the mortality between two groups( 7. 7% vs.27. 3% , P =0. 300) . The incidence rates of pulmonary bacteria infection and multiple organ damage were significantly lower in the NPPV success subgroup as compared with the NPPV failure group( 2 /10 vs. 4/5, P =0. 01;1 /10 vs. 3/5, P = 0. 03) . Correlation analysis showed that failure of NPPV was significantly associated with pulmonary bacterial infection and multiple organ damage( r=0. 58, P lt;0. 05; r =0. 53, P lt;0. 05) . Logistic stepwise regression analysis showed that pulmonary bacterial infection was an independent risk factor associated with failure of NPPV( r2 =0. 33, P =0. 024) . In the success subgroup, respiratory rate significantly decreased( 29 ±4 breaths /min vs. 33 ±5 breaths /min, P lt; 0. 05) and PaO2 /FiO2 significantly increased ( 191 ±63 mmHg vs. 147 ±55 mmHg, P lt;0. 05) at the time of 24 hours after NPPV treatment as compared with baseline. There were no significant change after NPPV treatment in heart rate, APACHEⅡ score, pH and PaCO2 ( all P gt;0. 05) . On the other hand in the failure subgroup, after 24 hours NPPV treatment, respiratory rate significantly increased( 40 ±3 breaths /min vs. 33 ±3 breaths /min, P lt;0. 05) and PaO2 /FiO2 showed a tendency to decline( 98 ±16 mmHg vs. 123 ±34 mmHg, P gt; 0. 05) . Conclusions In selected patients, NPPV is an effective and safe intervention for ALI/ARDS with improvement of pulmonary oxygenation and decrease of intubation rate. The results of current study support the use of NPPV in ALI/ARDS as the firstline choice of early intervention with mechanical ventilation.

          Release date: Export PDF Favorites Scan
        • Effects of non-invasive positive pressure ventilation during treadmill exercise in stable patients with severe chronic obstructive pulmonary disease

          Objective To investigate the effects of mask BiPAP noninvasive positive ventilation (NIPPV) during treadmill exercise on dyspnea index and exercise endurance in stable patients with severe chronic obstructive pulmonary disease (COPD). Methods Twenty inpatients with stable severe COPD between August 2015 and January 2016 were recruited in the study. The following parameters were measured before and after 8-week rehabilitation by NIPPV during treadmill exercises, including 12-minute walking distance (12MWD), Borg dyspnea score, mean pulmonary arterial pressure (mPAP), PaO 2 and PaCO 2, times of acute exacerbation in 1 year, adverse reactions, and adherence. Results After rehabilitation for 8 weeks, the following parameters were improved than those before treatment including 12MWD [(810±20) mvs. (680±15) m,P<0.01], Borg dyspnea score (2.4±0.1vs. 4.4±0.3,P<0.01), mPAP [(34.4±2.7) mm Hgvs. (43.5±3.8) mm Hg], PaCO 2 [(49.8±4.9) mm Hgvs. (64.3±5.2) mm Hg], PaO 2 [(64.4±4.1) mm Hgvs. (52.3±3.9) mm Hg] and the times of acute exacerbation (2.1±0.7vs. 4.3±2.1,P<0.01). Adverse reactions included oropharyngeal drying (2 cases) and gaseous distention (8 cases) which can be tolerated without special treatment. Conclusion Mask NIPPV during treadmill exercise is safe and effective for stable patients with severe COPD and worthy of clinical application.

          Release date:2017-09-25 01:40 Export PDF Favorites Scan
        • Risk factors for failure of noninvasive positive pressure ventilation in treatment of acute exacerbation of chronic obstructive pulmonary disease and respiratory failure: a meta analysis

          Objective The risk factors of noninvasive positive pressure ventilation (NPPV) in the treatment of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) combined with failure of respiratory failure were identified by meta-analysis, so as to provide a basis for early clinical prevention and treatment failure and early intervention. Methods PubMed, The Cochrane Library, EMbase, China National Knowledge Infrastructure, Wanfang, VIP and CBM Data were searched to collect studies about risk factors about failure of noninvasive positive pressure ventilation in AECOPD and respiratory failure published from January 2000 to January 2021. Two researchers independently conducted literature screening, literature data extraction and quality assessment. Meta-analysis was performed on the final literature obtained using RevMan 5.3 software. Results Totally 19 studies involving 3418 patients were recruited. The statistically significant risk factors included Acute Physiology and Chronic Health Evaluation (APACHEⅡ) score, pre-treatment PCO2, pre-treatment pH, Glasgow Coma Scale (GCS), respiratory rate (RR) before treatment, body mass index (BMI), age, C-reactive protein (CRP), renal insufficiency, sputum disturbance, aspiration of vomit. Conclusions High APACHE-Ⅱ score, high PCO2 before treatment, low pH value before treatment, low GCS score, high RR before treatment, low BMI, advanced age, low albumin, high CRP, renal insufficiency, sputum disturbance, and vomit aspiration were the risk factors for failure of respiratory failure in patients with COPD treated by NIPPV. Failure of non-invasive positive pressure ventilation in COPD patients with respiratory failure is affected by a variety of risk factors, and early identification and control of risk factors is particularly important to reduce the rate of treatment failure.

          Release date:2022-01-12 11:04 Export PDF Favorites Scan
        • Risk factors associated with failure of noninvasive positive pressure ventilation in acute respiratory failure due to acute exacerbation of chronic obstructive pulmonary disease

          Objective To analyze the risk factors of treatment failure by noninvasive positive pressure ventilation (NPPV) in patients with acute respiratory failure (ARF) due to acute exacerbation of chronic obstructive pulmonary disease (AECOPD), and explore the best time that NPPV be replaced by invasive ventilation when NPPV failure occurs. Methods The data of patients with ARF due to AECOPD who were treated with NPPV from January 2013 to December 2015 were retrospectively collected. The patients were divided into two groups: the NPPV success group and the NPPV failure group (individuals who required endotracheal intubation or tracheotomy at any time). The Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ score was analyzed; the Glasgow Coma Scale score, respiratory rate (RR), pH value, partial pressure of oxygen (PaO2), PaO2/fraction of inspired oxygen (FiO2) ratio, and partial pressure of carbon dioxide were also analyzed at admission, after 2 hours of NPPV, and after 24 hours of NPPV. Results A total of 185 patients with ARF due to AECOPD were included. NPPV failed in 35.1% of the patients (65/185). Multivariate analysis identified the following factors to be independently associated with NPPV failure: APACHEⅡscore≥30 [odds ratio (OR)=20.603, 95% confidence interval (CI) (5.309, 80.525), P<0.001], RR at admission≥35 per minute [OR=3.723, 95%CI (1.197, 11.037), P=0.020], pH value after 2 hours of NPPV<7.25 [OR=2.517, 95%CI (0.905, 7.028), P=0.070], PaO2 after 2 hours of NPPV<60 mm Hg (1 mm Hg=0.133 kPa) [OR=3.915, 95%CI (1.374, 11.508), P=0.010], and PaO2/FiO2 after 2 hours of NPPV<200 mm Hg [OR=4.024, 95%CI (1.542, 11.004), P=0.010]. Conclusion When patients with ARF due to AECOPD have a higher severity score, have a rapid RR at admission, or fail to improve in terms of pH and oxygenation after 2 hours of NPPV, the risk of NPPV failure is higher.

          Release date:2017-11-24 10:58 Export PDF Favorites Scan
        • Application of Noninvasive Positive Pressure Ventilation in Patients with Acute Left Heart Failure

          Objective To investigate the effects of noninvasive positive pressure ventilation (NPPV) on patients with acute left heart failure. Methods Twenty patients with acute left heart failure diagnosed between September 2013 and July 2014 were randomized into treatment group (n=10) and control group (n=10). Both groups used conventional sedations, diuretics and drugs that strengthened the heart and dilated the vessels, while early use of NPPV was applied in the experimental group. Arterial blood gas analysis [pH value, pressure of arterial carbon dioxide (PaCO2), and pressure of arterial oxygen (PaO2)], heart rate (HR), respiration, duration of Intensive Care Unit (ICU) stay and invasive mechanical ventilation, duration of overall mechanical ventilation, and success case numbers before and two hours after treatment were observed and analyzed. Results For the control group, two hours after treatment, PaO2 was (67.0±8.5) mm Hg (1 mm Hg=0.133 kPa), HR was (124±10) times/min, Respiration was (34±4) times/min, the duration of ICU stay was (6.0±1.1) days, invasive ventilation was for (32.0±3.1) hours, and the total time of mechanical ventilation was (32.0±3.1) hours. Those indexes for the treatment group two hours after treatment were: PaO2, (82.3±8.9) mm Hg; HR, (98±11) times/min; respiration, (24±4) times/min; the duration of ICU stay, (4.0±0.8) days; invasive ventilation time, (16.0±1.3) hours; the total time of mechanical ventilation, (26.0±1.8) hours. All the differences for each index between the two groups were statistically significant (P < 0.05). Conclusion Early application of NPPV can rapidly relieve clinical symptoms and reduce the medical cost for patients with acute left heart failure.

          Release date: Export PDF Favorites Scan
        • Impact of sedation and/or analgesia during noninvasive positive pressure ventilation in patients with AECOPD after extubation

          Objective Sedation and/or analgesia is often applied during noninvasive positive pressure ventilation (NIPPV) to make patients comfortable, and thus improve the synchronization between patients and ventilator. Nevertheless, the effect of sedation and/or analgesia on the clinical outcome of the patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) after extubation remains controversial. Methods A retrospective study was conducted on patients with AECOPD who received NIPPV after extubation in seven intensive care units in West China Hospital, Sichuan University between December 2013 and December 2017 . A logistic regression model was used to analyze the association between the use of sedation and/or analgesia and clinical outcomes including rate of NIPPV failure (defined as the need for reintubation and mechanical ventilation), hospital mortality, and length of intensive care unit stay after extubation. Results A total of 193 patients were included in the analysis, and 62 cases of these patients received sedation and/or analgesia during NIPPV. The usage of sedation and/or analgesia could result in failure of NIPPV (adjusted odd ratio [OR] 0.10, 95% confidence interval [CI] 0.02 - 0.52, P=0.006) and death (adjusted OR=0.13, 95%CI 0.04 - 0.42, P=0.001). Additionally, intensive care unit stay after extubation was longer in the patients who did not receive sedation and/or analgesia than those who did (11.02 d vs. 6.10 d, P< 0.01). Conclusion The usage of sedation and/or analgesia during NIPPV can decrease both the rate of NIPPV failure and hospital mortality in AECOPD patients after extubation.

          Release date:2022-11-29 04:54 Export PDF Favorites Scan
        • Efficacy of home noninvasive positive pressure ventilation on patients with severe stable chronic obstructive pulmonary disease in China: a meta-analysis

          Objective To systematically evaluate the efficacy of home noninvasive positive pressure ventilation (HNPPV) on patients with severe stable chronic obstructive pulmonary disease in China. Methods Systematic literature search was performed in Chinese BioMedical Literature Database, WanFang Data, VIP Database, Chinese National knowledge Infrastructure databases from inception to January 2018. All randomized controlled trials (RCTs) that reported comparison of the efficacy of HNPPV on patients with severe stable chronic obstructive pulmonary disease were included. All related data were extracted. Meta-analysis was conducted using the statistical software RevMan 5.3 on the basis of strict quality evaluation. Results A total of 767 patients from 14 studies were included in this meta-analysis. The combined results showed that, compared with the control group, HNPPV could significantly reduce the mortality (relative risk 0.51, 95%CI 0.33 – 0.78, P=0.002) and PaCO2 [weighted mean difference (MD) –10.78, 95%CI –13.17 – –8.39, P<0.000 01] of patients, improve the levels of PaO2 (MD 7.84, 95%CI 5.81 – 9.87, P<0.000 01), FEV1 (MD 0.13, 95%CI 0.08 – 0.18, P<0.000 01), and the quality of life (MD –6.27, 95% CI –9.04 – –3.51, P<0.000 01). Conclusion HNPPV can reduce the mortality of patients, improve the gas exchange, pulmonary function and the quality of life, but more large sample, high-quality, and multicenter RCT studies are needed.

          Release date:2019-05-23 04:40 Export PDF Favorites Scan
        • Effects of Enteral Tube Feeding on Moderate AECOPD Patients Received Noninvasive Positive Pressure Ventilation

          Objective To explore the effects of enteral tube feeding on moderate AECOPD patients who underwent noninvasive positive pressure ventilation ( NPPV) . Methods Sixty moderate AECOPD patients with NPPV admitted from January 2009 to April 2011 were recruited for the study. They were randomly divided into an enteral tube feeding group (n=30) received enteral tube feeding therapy, and an oral feeding group (n=30) received oral feeding therapy. Everyday nutrition intake and accumulative total nutrition intake in 7 days, plasma level of prealbumin and transferrin, success rate of weaning, duration of mechanical ventilation, length of ICU stay, rate of trachea cannula, and mortality rate in 28 days were compared between the two groups. Results Compared with the oral feeding group, the everyday nutrition intake and accumulative total nutrition intake in 7 days obviously increased (Plt;0.05) , while the plasma prealbumin [ ( 258.4 ±16.5) mg/L vs. (146.7±21.6) mg/L] and transferrin [ ( 2.8 ±0.6) g/L vs. ( 1.7 ±0.3) g/L] also increased significantly after 7 days in the enteral tube feeding group( Plt;0.05) . The success rate of weaning ( 83.3% vs. 70.0%) , the duration of mechanical ventilation [ 5. 6( 3. 2-8. 6) days vs. 8. 4( 4. 1-12. 3) days] , the length of ICU stay [ 9. 2( 7. 4-11. 8) days vs. 13. 6( 8.3-17. 2) days] , the rate of trachea cannula ( 16. 6% vs. 30. 0% ) , the mortality rate in 28 days ( 3. 3% vs. 10. 0% ) all had significant differences between the enteral tube feeding group and the oral feeding group. Conclusions For moderate AECOPD patients with NPPV, enteral tube feeding can obviously improve the condition of nutrition and increase the success rate of weaning, shorten the mechanical ventilation time and the mean stay in ICU, decrease the rate of trachea cannula and mortality rate in 28 days. Thus enteral tube feeding should be preferred for moderate AECOPD patients with NPPV.

          Release date:2016-09-13 04:00 Export PDF Favorites Scan
        • Efficacy of noninvasive positive pressure ventilation by helmet in adults with acute respiratory failure: a meta-analysis

          Objective To systematically review the efficacy of noninvasive positive pressure ventilation (NPPV) by helmet in adults with acute respiratory failure. Methods Randomized controlled trials (RCTs) or cohort studies about noninvasive positive pressure ventilation (NPPV) by helmet in adults with acute respiratory failure were retrieved in PubMed, The Cochrane Library (Issue 11, 2016), Web of Science, EMbase, CBM, CNKI and WanFang Data databases from inception to November 2016. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Stata 12.0 software was then used to perform meta-analysis. Results A total of eight studies were included. The results of meta-analysis showed that, NPPV by helmet could significantly reduce the carbon dioxide partial pressure (cohort study: SMD=–0.46, 95%CI –0.75 to –0.18, P=0.001), tracheal intubation rate (RCT: OR=0.36, 95%CI 0.17 to 0.77, P=0.008) and hospital mortality (RCT: OR=0.48, 95%CI 0.24 to 0.98, P=0.044), improve the positive end expiratory pressure (RCT: SMD=1.27, 95%CI 0.87 to 1.67, P<0.05) and respiratory status (RCT: SMD=–0.45, 95%CI –0.81 to –0.08,P=0.017). There was no significant difference in the duration of NPPV(cohort study: OR=–0.20, 95%CI –0.50 to 0.09, P=0.177; RCT: OR=–0.24, 95%CI –0.86 to 0.38, P=0.445). Conclusion NPPV by helmet can reduce the carbon dioxide partial pressure, tracheal intubation rate, hospital mortality and improve the positive end expiratory pressure, respiratory status. But the effects in the duration of NPPV and oxygenation index are uncertain. Due to limited quality and quantity of the included studies, more high quality studies are needed to verify above conclusion.

          Release date:2017-11-21 03:49 Export PDF Favorites Scan
        • Physiological Effects of Oxygen Injection Site during Noninvasive Positive Pressure Ventilation

          Objective To investigate the physiological effects of different oxygen injection site on ventilatory status and oxygenation during noninvasive positive pressure ventilation ( NPPV) with portable noninvasive ventilators. Methods A prospective crossover randomized study was performed. Oxygen injection site was randomized into the outlet of the ventilator, the connection site between mask and circuit, and the mask under the condition of leak port immobilized in the mask. Oxygen flow was retained in the baseline level at the initial 5 to 10 minutes, and adjusted to obtain arterial oxygen saturation measured by pulse oximetry ( SpO2 ) ranging from 90% to 95% after SpO2 remains stable. SpO2 at the initial 5 to 10 minutes, oxygen flow, ventilatory status, oxygenation, hemodynamics and dyspnea indexes at0. 5 hour, 1 hour, and 2 hours of NPPV were compared between different oxygen injection sites. Results 10 patients were recruited into the study. Under the condition of the same oxygen flow, SpO2 with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit [ ( 98.9 ±0.9) % vs. ( 96.9 ±1.1) % , P =0. 003] , whereas SpO2 with oxygen injection site in the connection site between mask and circuit was significantly higher than that with oxygen injection site in the mask [ ( 96.9 ±1.1) % vs. ( 94.1 ±1.6) %, P = 0.000] . Oxygen flow with oxygen injection site in the mask was statistically higher than that with oxygen injection site at other sites ( P lt; 0.05) . Arterial oxygen tension/ oxygen flow with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit ( 67.9 ±31.1 vs. 37.0 ±15.0, P =0.007) , and than that with oxygen injection site in the mask ( 67.9 ± 31.1 vs. 25.0 ±9.1, P = 0.000) . pH, arterial carbon dioxide tension, hemodynamics and dyspnea indexes were not significantly different between different oxygen injection sites ( P gt; 0.05) .Conclusions When portable noninvasive ventilator was applied during NPPV, oxygen injection site significantly affects improvement of oxygenation, and shows a trend for affecting ventilatory status and work of breathing. When the leak port was immobilized in the mask, the nearer oxygen injection site approaches the outlet of the ventilator, the more easily oxygenation is improved and the lower oxygen flow is demanded.

          Release date:2016-09-13 03:53 Export PDF Favorites Scan
        2 pages Previous 1 2 Next

        Format

        Content

      3. <xmp id="1ykh9"><source id="1ykh9"><mark id="1ykh9"></mark></source></xmp>
          <b id="1ykh9"><small id="1ykh9"></small></b>
        1. <b id="1ykh9"></b>

          1. <button id="1ykh9"></button>
            <video id="1ykh9"></video>
          2. 射丝袜