Objective Establishing Nomogram to predict the overall survival (OS) rate of patients with gastric adenocarcinoma by utilizing the database of the Surveillance, Epidemiology, and End Results (SEER) Program. Methods Obtained the data of 3 272 gastric adenocarcinoma patients who were diagnosed between 2004 and 2014 from the SEER database. These patients were randomly divided into training (n=2 182) and validation (n=1 090) cohorts. The Cox proportional hazards regression model was performed to evaluate the prognostic effects of multiple clinicopathologic factors on OS. Significant prognostic factors were combined to build Nomogram. The predictive performance of Nomogram was evaluated via internal (training cohort data) and external validation (validation cohort data) by calculating index of concordance (C-index) and plotting calibration curves. Results In the training cohort, the results of Cox proportional hazards regression model showed that, age at diagnosis, race, grade, 6th American Joint Committee on Cancer (AJCC) stage, histologic type, and surgery were significantly associated with the survival prognosis (P<0.05). These factors were used to establish Nomogram. The Nomograms showed good accuracy in predicting OS rate, with C-index of 0.751 [95%CI was (0.738, 0.764)] in internal validation and C-index of 0.753 [95% CI was (0.734, 0.772)] in external validation. All calibration curves showed excellent consistency between prediction by Nomogram and actual observation. Conclusion Novel Nomogram for patients with gastric adenocarcinoma was established to predict OS in our study has good prognostic significance, it can provide clinicians with more accurate and practical predictive tools which can quickly and accurately assess the patients’ survival prognosis individually, and can better guiding clinicians in the follow-up treatment of patients.
ObjectiveTo investigate the value of preoperative clinical data and computed tomography angiography (CTA) data in predicting perioperative mortality risk in patients with acute aortic dissection (AAD), and to construct a Nomogram prediction model. MethodsA retrospective study was conducted on AAD patients treated at Affiliated Hospital of Zunyi Medical University from February 2013 to July 2023. Patients who died during the perioperative period were included in the death group, and those who improved during the same period were randomly selected as the non-death group. The first CTA data and preoperative clinical data within the perioperative period of the two groups were collected, and related risk factors were analyzed to screen out independent predictive factors for perioperative death. The Nomogram prediction model for perioperative mortality risk in AAD patients was constructed using the screened independent predictive factors, and the effect of the Nomogram was evaluated by calibration curves and area under the curve (AUC). ResultsA total of 270 AAD patients were included. There were 60 patients in the death group, including 42 males and 18 females with an average age of 56.89±13.42 years. There were 210 patients in the non-death group, including 163 males and 47 females with an average age of 56.15±13.77 years. Multivariate logistic regression analysis showed that type A AAD [OR=0.218, 95%CI (0.108, 0.440), P<0.001], irregular tear morphology [OR=2.054, 95%CI (1.025, 4.117), P=0.042], decreased hemoglobin [OR=0.983, 95%CI (0.971, 0.995), P=0.007], increased uric acid [OR=1.003, 95%CI (1.001, 1.005), P=0.004], and increased aspartate aminotransferase [OR=1.003, 95%CI (1.000, 1.006), P=0.035] were independent risk factors for perioperative death in AAD patients. The Nomogram prediction model constructed using the above risk factors had an AUC of 0.790 for predicting perioperative death, indicating good predictive performance. ConclusionType A AAD, irregular tear morphology, decreased hemoglobin, increased uric acid, and increased aspartate aminotransferase are independent predictive factors for perioperative death in AAD patients. The Nomogram prediction model constructed using these factors can help assess the perioperative mortality risk of AAD patients.
ObjectiveBased on a large sample of data, study the factors affecting the survival and prognosis of patients with rectal cancer and construct a prediction model for the survival and prognosis.MethodsThe clinical data of 26 028 patients with rectal cancer were screened from the Surveillance, Epidemiology, and End Results (SEER) clinical database of the National Cancer Institute. Univariate and multivariate Cox proportional hazard regression analysis were used to screen related risk factors. Finally, the Nomogram prediction model was summarized and its accuracy was verified.ResultsResult of multivariate Cox proportional hazard regression analysis showed that the risk factors affecting the survival probability of rectal cancer included: age, gender, marital status, TMN staging, T staging, tumor size, degree of tissue differentiation, total number of lymph nodes removed, positive lymph node ratio, radiotherapy, and chemotherapy (P<0.05). Then we further built the Nomogram prediction model. The C index of the training cohort and the validation cohort were 0.764 and 0.770, respectively. The area under the ROC curve (0.777 and 0.762) for 3 years and 5 years, and the calibration curves of internal and external validation all indicated that the model could effectively predict the survival probability of rectal cancer.ConclusionThe constructed Nomogram model can predict the survival probability of rectal cancer, and has clinical guiding significance for the prognostic intervention of rectal cancer.
Objective To establish a predictive model for long-term tumor-specific survival after surgery for patients with intermediate to advanced medullary thyroid cancer (MTC) based on American Joint Committee on Cancer (AJCC) TNM staging, by using the Surveillance, Epidemiology, and End Results (SEER) Database. Methods The data of 692 patients with intermediate to advanced MTC who underwent total thyroidectomy and cervical lymph node dissection registered in the SEER database during 2004–2017 were extracted and screened, and were randomly divided into 484 cases in the modeling group and 208 cases in the validation group according to 7∶3. Cox proportional hazard regression was used to screen predictors of tumor-specific survival after surgery for intermediate to advanced stage MTC and to develop a Nomogram model. The accuracy and usefulness of the model were tested by using the consistency index (C-index), calibration curve, time-dependent ROC curve and decision curve analysis (DSA). Results In the modeling group, the multivariate Cox proportional hazard regression model indicated that the factors affecting tumor-specific survival after surgery in patients with intermediate to advanced MTC were AJCC TNM staging, age, lymph node ratio (LNR), and tumor diameter, and the Nomogram model was developed based on these results. The modeling group had a C-index of 0.827 and its area under the 5-year and 10-year time-dependent ROC curves were 0.865 [95%CI (0.817, 0.913)], 0.845 [95%CI (0.787, 0.904)], respectively, and the validation group had a C-index of 0.866 and its area under the 5-year and 10-year time-dependent ROC curves were 0.866 [95%CI (0.798, 0.935)] and 0.923 [95%CI (0.863, 0.983)], respectively. Good agreement between the model-predicted 5- and 10-year tumor-specific survival rates and the actual 5- and 10-year tumor-specific survival rates were showed in both the modeling and validation groups. Based on the DCA curve, the new model based on AJCC TNM staging was developed with a significant advantage over the former model containing only AJCC TNM staging in terms of net benefits obtained by patients at 5 years and 10 years after surgery. Conclusion The prognostic model based on AJCC TNM staging for predicting tumor-specific survival after surgery for intermediate to advanced MTC established in this study has good predictive effect and practicality, which can help guide personalized, precise and comprehensive treatment decisions and can be used in clinical practice.
ObjectivesTo compare the survival outcomes between hepatocellular carcinoma and hepatic angiosarcoma, and to develop and validate a nomogram predicting the outcome of hepatic angiosarcoma.MethodsThe Surveillance, Epidemiology and End Results (SEER) database was electronically searched to collect the data of hepatic angiosarcoma patients and hepatocellular carcinoma patients from 2004 to 2016. Propensity score matching (PSM) was used to match the two groups by the ratio of 1:3. Cox regression analysis was used to compare the survival outcomes between hepatic angiosarcoma and HCC. In the angiosarcoma group, population was divided into training set and validation set by 6:4. Nomograms were built for the prediction of half- and one- year survival, and validated by concordance index (C-index) and calibration plots.ResultsA total of 210 histologically confirmed hepatic angiosarcoma patients and 630 hepatocellular carcinoma patients were included. The overall survival of HCC was significantly longer than angiosarcoma (3-year survival: 18.4% vs. 6.7%, median survival: 5 months vs. 1 month, P<0.001), and the nomogram achieved good accuracy with an internal C-index of 0.751 and an external C-index of 0.737.ConclusionsThe overall survival of HCC is significantly longer than angiosarcoma. The proposed nomograms can assist to predict survival probability in patients with hepatic angiosarcoma. Due to limitation of the data of included patients, more high-quality studies are required to verify above conclusions.
Objective To explore the influencing factors of visual prognosis of macular edema secondary to branch retinal vein occlusion (BRVO-ME) after treatment with ranibizumab, and construct and verify the nomogram model. MethodsA retrospective study. A total of 130 patients with BRVO-ME diagnosed by ophthalmology examination in the Department of Ophthalmology, Liuzhou Red Cross Hospital from January 2019 to December 2021 were selected in this study. All patients received intravitreal injection of ranibizumab. According to the random number table method, the patients were divided into the training set and the test set with a ratio of 3:1, which were 98 patients (98 eyes) and 32 patients (32 eyes), respectively. According to the difference of logarithm of the minimum angle of resolution (logMAR) best corrected visual acuity (BCVA) at 6 months after treatment and logMAR BCVA before treatment, 98 patients (98 eyes) in the training set were divided into good prognosis group (difference ≤-0.3) and poor prognosis group (difference >-0.3), which were 58 patients (58 eyes) and 40 patients (40 eyes), respectively. The clinical data of patients in the two groups were analyzed, univariate and multivariate logistic regression analysis were carried out for the different indicators, and the visualization regression analysis results were obtained by using R software. The consistency index (C-index), convolutional neural network (CNN), calibration curve and receiver operating characteristic (ROC) curve were used to verify the accuracy of the nomogram model. ResultsUnivariate analysis showed that age, disease course, outer membrane (ELM) integrity, elliptical zone (EZ) integrity, BCVA, center macular thickness (CMT), outer hyperreflective retinal foci (HRF), inner retina HRF, and the blood flow density of retinal deep capillary plexus (DCP) were risk factors affecting the visual prognosis after treatment with ranibizumab in BRVO-ME patients (P<0.05). Multivariate logistic regression analysis showed that course of disease, ELM integrity, BCVA and outer HRF were independent risk factors for visual prognosis after ranibizumab treatment for BRVO-ME patients (P<0.05). The ROC area under the curve of the training set and the test set were 0.846[95% confidence interval (CI) 0.789-0.887) and 0.852 (95%CI 0.794 -0.873)], respectively; C-index were 0.836 (95%CI 0.793-0.865) and 0.845 (95%CI 0.780-0.872), respectively. CNN showed that the error rate gradually stabilized after 300 cycles, with good model accuracy and strong prediction ability. ConclusionsCourse of disease, ELM integrity, BCVA and outer HRF were independent risk factors of visual prognosis after ranibizumab treatment in BRVO-ME patients. The nomogram model based on risk factors has good differentiation and accuracy.
ObjectiveTo establish and preliminarily validate a nomogram model for predicting the risk of retinal vein occlusion (RVO). MethodsA retrospective clinical study. A total of 162 patients with RVO (RVO group) diagnosed by ophthalmology examination in The Second Affiliated Hospital of Xi'an Jiaotong University from January 2017 to April 2022 and 162 patients with age-related cataract (nRVO group) were selected as the modeling set. A total of 45 patients with branch RVO, 45 patients with central RVO and 45 patients with age-related cataract admitted to Xi 'an Fourth Hospital from January 2022 to February 2023 were used as the validation set. There was no significant difference in gender composition ratio (χ2=2.433) and age (Z=1.006) between RVO group and nRVO group (P=0.120, 0.320). Age, gender, blood routine (white blood cell count, hemoglobin concentration, platelet count, neutrophil count, monocyte count, lymphocyte count, erythrocyte volume, mean platelet volume, platelet volume distribution width), and four items of thrombin (prothrombin time, activated partial thrombin time, fibrinogen, and thrombin time) were collected in detail ), uric acid, blood lipids (total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, lipoprotein a), hypertension, diabetes mellitus, coronary heart disease, and cerebral infarction. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio were calculated. The single logistic regression was used to analyze the clinical parameters of the two groups of patients in the modeling set, and the stepwise regression method was used to screen the variables, and the column graph for predicting the risk of RVO was constructed. The Bootstrap method was used to repeated sample 1 000 times for internal and external verification. The H-L goodness-of-fit test and receiver operating characteristic (ROC) curve were used to evaluate the calibration and discrimination of the nomogram model. ResultsAfter univariate logistic regression and stepwise regression analysis, high density lipoprotein, neutrophil count and hypertension were included in the final prediction model to construct the nomogram. The χ2 values of the H-L goodness-of-fit test of the modeling set and the validation set were 0.711 and 4.230, respectively, and the P values were 0.701 and 0.121, respectively, indicating that the nomogram model had good prediction accuracy. The area under the ROC curve of the nomogram model for predicting the occurrence of post-stroke depression in the modeling set and the verification set was 0.741 [95% confidence interval (CI) 0.688-0.795] and 0.741 (95%CI 0.646-0.836), suggesting that the nomogram model had a good discrimination. ConclusionsLow high density lipoprotein level, high neutrophil count and hypertension are independent risk factors for RVO. The nomogram model established based on the above risk factors can effectively assess and quantify the risk of post-stroke depression in patients with cerebral infarction.
Objective To establish a scoring system for patients withnon-small cell lung cancer (NSCLC), complicated by chemotherapy and myelosuppression based on Logistic regression analysis. Methods The clinical data of patients with lung cancer who received chemotherapy in our hospital from January 2018 to April 2024 were collected. The influencing factors of chemotherapy complicated with myelosuppression were analyzed by univariate and Logistic regression, and a nematographic model was established. Results Compared with non-myelosuppressive group, there were statistically significant differences in pre-chemotherapy leukocyte, pre-chemotherapy hemoglobin, ECOG score, use of platinum drugs, use of anti-metabolic drugs, use of anti-microtubule drugs in myelosuppressive group (P<0.05). WBC<4.0×109/L (OR:4.166, 95%CI: 1.521~11.410), hemoglobin<110g/L (OR: 6.926, 95%CI: 1.817~26.392), ECOG score ≥2 points (OR: 2.235, 95%CI: 1.032~4.840), platinum drugs (OR: 5.738, 95%CI: 2.514~13.097), anti-microtubule drugs (OR: 4.284, 95%CI: 1.853~9.905) and anti-metabolic drugs (OR: 7.180, 95%CI: 2.608~19.769) was an independent risk factor for chemotherapy complicated with myelopathic depression in lung cancer patients (P<0.05). Model verification results showed that the C-index was 0.817 (95%CI: 0.783~0.851), the calibration curve of the model was close to the ideal curve, and the AUC of the ROC curve was 0.811 (95%CI: 0.780~0.842), which showed a net benefit of the model within the range of 10% to 87.5%. Conclusion The constructed nomogram model can effectively predict the risk of chemotherapy complicated with myelosuppression in non-small cell lung cancer patients.
ObjectiveTo analyze the relevant risk factors affecting postoperative relapse-free survival (RFS) in the primary gastrointestinal stromal tumors (GIST) and develop a Nomogram predictive model of postoperative RFS for the GIST patients. MethodsThe patients diagnosed with GIST by postoperative pathology from January 2011 to December 2020 at the First Hospital of Lanzhou University and Gansu Provincial People’s Hospital were collected, and then were randomly divided into a training set and a validation set at a ratio of 7∶3 using R software function. The univariate and multivariate Cox regression analysis were used to identify the risk factors affecting the RFS for the GIST patients after surgery, and then based on this, the Nomogram predictive model was constructed to predict the probability of RFS at 3- and 5-year after surgery for the patients with GIST. The effectiveness of the Nomogram was evaluated using the area under the receiver operating characteristic curve (AUC), consistency index (C-index), and calibration curve, and the clinical utility of the Nomogram and the modified National Institutes of Health (M-NIH) classification standard was evaluated using the decision curve analysis (DCA). ResultsA total of 454 patients were included, including 317 in the training set and 137 in the validation set. The results of multivariate Cox regression analysis showed that the tumor location, tumor size, differentiation degree, American Joint Committee onCancer TNM stage, mitotic rate, CD34 expression, treatment method, number of lymph node detection, and targeted drug treatment time were the influencing factors of postoperative RFS for the GIST patients (P<0.05). The Nomogram predictive model was constructed based on the influencing factors. The C-index of the Nomogram in the training set and validation set were 0.731 [95%CI (0.679, 0.783)] and 0.685 [95%CI (0.647, 0.722)], respectively. The AUC (95%CI) of distinguishing the RFS at 3- and 5-year after surgery were 0.764 (0.681, 0.846) and 0.724 (0.661, 0.787) in the training set and 0.749 (0.625, 0.872) and 0.739 (0.647, 0.832) in the validation set, respectively. The calibration curve results showed that a good consistency of the 3-year and 5-year recurrence free survival rates between the predicted results and the actual results in the training set, while which was slightly poor in the validation set. There was a higher net benefit for the 3-year recurrence free survival rate after GIST surgery when the threshold probability range was 0.19 to 0.57. When the threshold probability range was 0.44 to 0.83, there was a higher net benefit for the 5-year recurrence free survival rate after GIST surgery. And within the threshold probability ranges, the net benefit of the Nomogram was better than the M-NIH classification system at the corresponding threshold probability. ConclusionsThe results of this study suggest that the patients with GIST located in the other sites (mainly including the esophagus, duodenum, and retroperitoneum), with tumor size greater than 5 cm, poor or undifferentiated differentiation, mitotic rate lower than 5/50 HPF, negative CD34 expression, ablation treatment, number of lymph nodes detected more than 4, and targeted drug treatment time less than 3 months need to closely pay attentions to the postoperative recurrence. The discrimination and clinical applicability of the Nomogram predictive model are good.
Objective To establish a prediction model for the 1-, 3-, and 5-year survival rates in patients with gastric cancer liver metastases (GCLM) by analyzing prognostic factors based on the Surveillance, Epidemiology, and End Results (SEER) database. Methods Clinical and pathological data from 591 patients diagnosed with GCLM between 2010 and 2015 were obtained from the SEER database. The population was randomly divided into a training cohort and an internal validation cohort at a 7 to 3 ratio. Independent predictors of GCLM were analyzed using univariate and multifactorial Cox regression. Consequently, nomograms were constructed. The model's accuracy was verified by calibration curve, ROC curve, and the C-index, and the clinical utility of the model was analyzed through decision curve analysis. Results Tumor differentiation grade, surgical status, and chemotherapy were significantly associated with the prognosis of GCLM patients, and these three factors were included in constructing the prognostic model and plotting the nomogram. The C-index was 0.706 (95%CI 0.677 to 0.735) and 0.749 (95%CI 0.710 to 0.788) for the training set and the internal validation cohort, respectively. The results of the ROC curve analysis indicated that the area under the curve (AUC) was over 0.7 at 1, 3, and 5 years for both the training and validation cohorts. Conclusion The prediction model of the GCLM is developed based on the 3 factors, i.e., tumor differentiation grade, surgery, and chemotherapy, and shows good prediction accuracy and thus may promote clinical decision making and individualized treatment of GCLM patients.